The dominant processes in the initialization and propagation of microstructurally short cracks include microstructural features such as crystallographic orientations of grains, grain boundaries, inclusions, voids, material phases, etc. The influence of the microstructural features is expected to vanish with distance from the crack tip. Also, the influence of the nearby microstructural features is expected to be smaller for a long than for a small crack. Finally, a crack of sufficient length can be modeled using classical fracture mechanic methods. In this paper the approach to estimate the crack length with vanishing influence from the microstructural feature is proposed. To achieve this, a model containing a large number of randomly sized, shaped, and oriented grains is employed. The random grain structure is modeled using a Voronoi tessellation. A series of cracks of lengths from about 1 to 7 grain lengths is inserted into the model, extending from a grain at the surface toward the interior of the model. The crack tip opening displacements are estimated and statistically analyzed for a series of random crystallographic orientation sets assigned to the grains adjacent to the crack. Anisotropic elasticity and crystal plasticity constitutive models are employed at the grain size scale. It is shown that the standard deviation of the crack tip opening displacement decreases from about 20% for a short surface crack embedded within a single grain to about 7% for a surface crack extending through seven grains. From the engineering point of view, a crack extending through less than about ten grain sizes is therefore considered to strongly depend on the neighboring microstructural features.

1.
Miller
,
K. J.
, 1987, “
The Behaviour of Short Fatigue Cracks and Their Initiation. Part II: A General Summary
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
10
(
2
), pp.
93
113
.
2.
Hussain
,
K.
, 1997, “
Short Fatigue Crack Behaviour and Analytical Models: A Review
,”
Eng. Fract. Mech.
,
58
(
4
), pp.
327
354
. 0013-7944
3.
Hussain
,
K.
,
de los Rios
,
E.
, and
Navarro
,
A.
, 1993, “
A Two-Stage Micromechanics Model for Short Fatigue Cracks
,”
Eng. Fract. Mech.
,
44
(
3
), pp.
425
436
. 0013-7944
4.
Morris
,
W. L.
,
Buck
,
O.
, and
Marcus
,
H. L.
, 1976, “
Fatigue Crack Initiation and Early Propagation in Al 2219–T851
,”
Metall. Trans. A
0360-2133,
7
(
7
), pp.
1161
1165
.
5.
Zhang
,
Y. H.
, and
Edwards
,
L.
, 1994, “
On the Blocking Effect of Grain Boundaries on Small Crystallographic Fatigue Crack Growth
,”
Mater. Sci. Eng., A
0921-5093,
188
(
1–2
), pp.
121
132
.
6.
Düber
,
O.
,
Künkler
,
B.
,
Krupp
,
U.
,
Christ
,
H. -J.
, and
Fritzen
,
C. -P.
, 2006, “
Experimental Characterization and Two-Dimensional Simulation of Short-Crack Propagation in an Austenitic-Ferritic Duplex Steel
,”
Int. J. Fatigue
0142-1123,
28
(
9
), pp.
983
992
.
7.
Suresh
,
S.
, 1991,
Fatigue of Materials
,
Cambridge University Press
,
Cambridge
.
8.
Tvergaard
,
V.
,
Wei
,
Y.
, and
Hutchinson
,
J. W.
, 2001, “
Edge Cracks in Plastically Deforming Surface Grains
,”
Eur. J. Mech. A/Solids
,
20
(
5
), pp.
731
738
. 1359-6454
9.
Zhai
,
T.
,
Wilkinson
,
A. J.
, and
Martin
,
J. W.
, 2000, “
A Crystallographic Mechanism for Fatigue Crack Propagation Through Grain Boundaries
,”
Acta Mater.
,
48
(
20
), pp.
4917
4927
. 1359-6454
10.
Watanabe
,
T.
, 1984, “
Approach to Grain Boundary Design for Strong and Ductile Polycrystals
,”
Res. Mech.
0143-0084,
11
(
1
), pp.
47
84
.
11.
Lehockey
,
E. M.
,
Brennenstuhl
,
A. M.
, and
Thompson
,
I.
, 2004, “
On the Relationship Between Grain Boundary Connectivity, Coincident Site Lattice Boundaries, and Intergranular Stress Corrosion Cracking
,”
Corros. Sci.
0010-938X,
46
(
10
), pp.
2383
2404
.
12.
Simonovski
,
I.
,
Nilsson
,
K.
, and
Cizelj
,
L.
, 2007. “
Crack Tip Displacements of Microstructurally Small Cracks in 316l Steel and Their Dependence on Crystallographic Orientations of Grains
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
30
(
6
), pp.
463
478
.
13.
Simonovski
,
I.
,
Nilsson
,
K. -F.
, and
Cizelj
,
L.
, 2007, “
The Influence of Crystallographic Orientation on Crack Tip Displacements of Microstructurally Small, Kinked Crack Crossing the Grain Boundary
,”
Comput. Mater. Sci.
,
39
(
4
), pp.
817
828
. 0927-0256
14.
Kalinin
,
G.
,
Barabash
,
V.
,
Fabritsiev
,
S.
,
Kawamura
,
H.
,
Mazul
,
I.
,
Ulrickson
,
M.
,
Wu
,
C.
, and
Zinkle
,
S.
, 2001, “
ITER R&D: Vacuum Vessel and In-Vessel Components: Materials Development and Test
,”
Fusion Eng. Des.
,
55
(
2–3
), pp.
231
246
. 0920-3796
15.
Riesch-Oppermann
,
H.
, 1999, “
VorTess Generation of 2D Random Poisson–Voronoi Mosaics as Framework for Micromechanical Modeling of Polycrystalline Materials-Algorithm and Subroutines Description
,” Technical Report No. FZKA 6325.
16.
Weyer
,
S.
,
Fröhlich
,
A.
,
Riesch-Oppermann
,
H.
,
Cizelj
,
L.
, and
Kovač
,
M.
, 2002, “
Automatic Finite Element Meshing of Planar Voronoi Tessellations
,”
Eng. Fract. Mech.
0013-7944,
69
(
8
), pp.
945
958
.
17.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Met.
,
62
, pp.
307
324
. 0020-2975
18.
Hill
,
R.
, and
Rice
,
J. R.
, 1972, “
Constitutive Analysis of Elastic-Plastic Crystals at Arbitrary Strain
,”
J. Mech. Phys. Solids
0022-5096,
20
(
6
), pp.
401
413
.
19.
Rice
,
J. R.
, 1970, “
On the Structure of Stress-Strain Relations of Time-Dependent Plastic Deformation in Metals
,”
ASME J. Appl. Mech.
,
3
(
7
), pp.
728
737
. 0021-8936
20.
Huang
,
Y.
, 1991, “
A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program
,” Division of Applied Sciences, Harvard University, http://www.columbia.edu/1jk2079/fem/umat documentation.pdfhttp://www.columbia.edu/1jk2079/fem/umat documentation.pdf.
21.
Peirce
,
D.
,
Asaro
,
R. J.
, and
Needleman
,
A.
, 1983, “
Material Rate Dependence and Localized Deformation in Crystalline Solids
,”
Acta Metall.
0001-6160,
31
(
12
), pp.
1951
1976
.
22.
Simonovski
,
I.
,
Nilsson
,
K. -F.
, and
Cizelj
,
L.
, 2005, “
Material Properties Calibration for 316L Steel Using Polycrystalline Model
,”
13th International Conference on Nuclear Engineering
, Beijing, China, May 16–20.
23.
Murakami
,
Y.
, 1987,
The Stress Intensity Factor Handbook
,
Pergamon
,
New York
.
24.
Potirniche
,
G. P.
, and
Daniewicz
,
S. R.
, 2003, “
Analysis of Crack Tip Plasticity for Microstructurally Small Cracks Using Crystal Plasticity Theory
,”
Eng. Fract. Mech.
,
70
(
13
), pp.
1623
1643
. 0013-7944
25.
Bennett
,
V. P.
, and
McDowell
,
D. L.
, 2003, “
Crack Tip Displacements of Microstructurally Small Surface Cracks in Single Phase Ductile Polycrystals
,”
Eng. Fract. Mech.
0013-7944,
70
(
2
), pp.
185
207
.
26.
Cizelj
,
L.
, and
Simonovski
,
I.
, 2008, “
Simulated Planar Polycrystals With Planar and Spatial Random Lattice Orientations
,”
Proceedings of the Ninth Biennial ASME Engineering Systems Design and Analysis Conference
, Haifa, Israel, July 7–9, 2008.
You do not currently have access to this content.