In this work we have deposited silicon carbide (SiC) at 1300°C with the addition of small amounts of propylene. The use of propylene and high concentrations of methyltrichlorosilane (9vol%) allowed the deposition of superhard SiC coatings (42 GPa). The superhard SiC could result from the presence of a SiC–C solid solution, undetectable by X-ray diffraction but visible by Raman spectroscopy. Another sample obtained by the use of 50vol% Argon, also showed the formation of SiC with good properties. The use of a flat substrate together with the particles showed the importance of carrying out the analysis on actual particles rather than in flat substrates. We show that it is possible to characterize the anisotropy of pyrolytic carbon by Raman spectroscopy.

1.
Lohnert
,
G. H.
,
Nabielek
,
H.
, and
Schenk
,
W.
, 1988, “
The Fuel Element of the HTR-Module, a Prerequisite of an Inherently Safe Reactor
,”
Nucl. Eng. Des.
,
109
, pp.
257
263
. 0029-5493
2.
Rennie
,
C. A.
, 1978, “
Achievements of the Dragon Project
,”
Ann. Nucl. Energy
,
5
, pp.
305
320
. 0306-4549
3.
Gough
,
J. R. C.
, and
Kern
,
D.
, 1967, “
Studies on the Coating of Fuel Particles for the ‘Dragon’ Reactor Experiment
,”
J. Nucl. Energy
,
21
, pp.
623
642
. 0022-3107
4.
Voice
,
E. H.
, 1971, “
The Formation and Structure of Silicon Carbide Pyrolytically Deposited in a Fluidised Bed of Microspheres
,” Ph.D. thesis, Bath University, Bath, England.
5.
Dayton
,
R. W.
,
Oxley
,
J. H.
, and
Townley
,
C. W.
, 1964, “
Ceramic Coated Particle Nuclear Fuels
,”
J. Nucl. Mater.
,
11
, pp.
1
31
. 0022-3115
6.
Ford
,
L. H.
,
Hibbert
,
N. S.
, and
Martin
,
D. G.
, 1972, “
Recent Developments of Coatings for GCFR and HTGCR Fuel Particles and Their Performance
,”
J. Nucl. Mater.
0022-3115,
45
, pp.
139
149
.
7.
López-Honorato
,
E.
,
Meadows
,
P. J.
,
Tan
,
J.
, and
Xiao
,
P.
, 2008, “
Control of Stoichiometry, Microstructure and Mechanical Properties in SiC Coatings Produced by Fluidized Bed Chemical Vapor Deposition
,”
J. Mater. Res.
,
23
, pp.
1785
1796
. 0884-2914
8.
López-Honorato
,
E.
,
Meadows
,
P. J.
,
Xiao
,
P.
,
Marsh
,
G.
, and
Abram
,
T. J.
, 2008, “
Structure and Mechanical Properties of Pyrolytic Carbon Produced by Fluidized Bed Chemical Vapor Deposition
,”
Nucl. Eng. Des.
,
238
, pp.
3121
3128
. 0029-5493
9.
Bourrat
,
X.
,
Trouvat
,
B.
,
Limousin
,
G.
, and
Vignoles
,
G.
, 1999, “
Pyrocarbon Anisotropy as Measured by Electron Diffraction and Polarized Light
,”
J. Mater. Res.
,
15
, pp.
92
101
. 0884-2914
10.
López-Honorato
,
E.
,
Meadows
,
P. J.
, and
Xiao
,
P.
, 2008, “
Fluidized Bed Chemical Vapor Deposition of Pyrolytic Carbon—I. Effect of Deposition Conditions on Microstructure
,”
Carbon
,
47
, pp.
396
410
. 0959-9428
11.
Mykhaylyk
,
O. O.
, and
Gadzira
,
M.
, 2001, “
Superhard Materials Based on the Solid Solution SiC–C
,”
J. Mater. Chem.
0959-9428,
11
, pp.
217
222
.
12.
Petti
,
D. A.
,
Buongiorno
,
J.
,
Maki
,
J. T.
,
Hobbins
,
R. R.
, and
Miller
,
G. K.
, 2003, “
Key Differences in the Fabrication, Irradiation and High Temperature Accident Testing of US and German TRISO-Coated Particle Fuel, and Their Implications on Fuel Performance
,”
Nucl. Eng. Des.
,
222
, pp.
281
297
. 0029-5493
13.
Minato
,
K.
, and
Fukuda
,
K.
, 1987, “
Chemical Vapor Deposition of Silicon Carbide for Coated Fuel Particles
,”
J. Nucl. Mater.
,
149
, pp.
233
246
. 0022-3115
14.
Yeheskel
,
J.
, and
Dariel
,
M. S.
, 1995, “
Codeposition of Free Silicon During CVD of Silicon Carbide
,”
J. Am. Ceram. Soc.
,
78
, pp.
229
232
. 0002-7820
15.
Reznik
,
B.
, and
Huttinger
,
K. J.
, 2002, “
On the Terminology for Pyrolytic Carbon
,”
Carbon
0008-6223,
40
, pp.
621
624
.
16.
Meadows
,
P. J.
,
Lopez-Honorato
,
E.
, and
Xiao
,
P.
, 2008, “
Fluidized Chemical Vapor Deposition of Pyrolytic Carbon—II. Effect of Deposition Conditions on Anisotropy
,”
Carbon
,
47
, pp.
251
262
. 0008-6223
You do not currently have access to this content.