Linear stability analysis by means of low-order network models is widely spread in industry and academia to predict the thermoacoustic characteristics of combustion systems. Even though a vast amount of publications on this topic exist, much less is reported on the predictive capabilities of such stability analyses with respect to real system behavior. In this sense, little effort has been made on investigating if predicted critical parameter values, for which the combustion system switches from stability to instability, agree with experimental observations. Here, this lack of a comprehensive experimental validation is addressed by using a model-based control scheme. This scheme is able to actively manipulate the acoustic field of a combustion test rig by imposing quasi-arbitrary reflection coefficients. It is employed to continuously vary the downstream reflection coefficient of an atmospheric swirl-stabilized combustion test rig from fully reflecting to anechoic. By doing so, the transient behavior of the system can be studied. In addition to that, an extension of the common procedure, where the stability of an operating point is classified solely based on the presence of high amplitude pressure pulsations and their frequency, is given. Generally, the predicted growth rates are only compared with measurements with respect to their sign, which obviously lacks a quantitative component. In contrast to that, in this paper, validation of linear stability analysis is conducted by comparing calculated and experimentally determined linear growth rates of unstable modes. Besides this, experimental results and model predictions are also compared in terms of frequency of the least stable mode. Excellent agreement between computations from the model and experiments is found. The concept is also used for active control of combustion instabilities. By tuning the downstream reflectivity of the combustion test rig, thermoacoustic instabilities can be suppressed. The underlying mechanism is an increase in the acoustic energy losses across the system boundary.

1.
Lieuwen
,
T. C.
and
Yang
,
V.
, eds., 2005,
Combustion Instabilities in Gas Turbine Engines, Progress in Astronautics and Aeronautics
(
210
),
AIAA, Inc.
,
Reston, VA
.
2.
Rea
,
S.
,
James
,
S.
,
Goy
,
C.
, and
Colechin
,
M. J. F.
, 2003, “
On-Line Combustion Monitoring on Dry Low NOx Industrial Gas Turbines
,”
Meas. Sci. Technol.
0957-0233,
14
(
7
), pp.
1123
1130
.
3.
Bothien
,
M. R.
,
Moeck
,
J. P.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
, 2007, “
Time Domain Modelling and Stability Analysis of Complex Thermoacoustic Systems
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
221
(
5
), pp.
657
668
.
4.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
, 2003, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,” ASME Paper No. 2003-GT-38688.
5.
Sattelmayer
,
T.
, and
Polifke
,
W.
, 2003, “
Assessment of Methods for the Computation of the Linear Stability of Combustors
,”
Combust. Sci. Technol.
0010-2202,
175
, pp.
453
476
.
6.
Stow
,
S. R.
and
Dowling
,
A. P.
, 2001, “
Thermoacoustic Oscillations in an Annular Combustor
,” ASME Paper No. 2001-GT-0037.
7.
Krüger
,
U.
,
Hüren
,
J.
,
Hoffmann
,
S.
,
Krebs
,
W.
,
Flohr
,
P.
, and
Bohn
,
D.
, 2001, “
Prediction and Measurement of Thermoacoustic Improvements in Gas Turbines With Annular Combustion Chambers
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
(
3
), pp.
557
566
.
8.
Matveev
,
K. I.
, and
Culick
,
F. E. C.
, 2003, “
A Study of Transition to Instability in a Rijke Tube With Axial Temperature Gradient
,”
J. Sound Vib.
0022-460X,
264
(
3
), pp.
689
706
.
9.
Kopitz
,
J.
,
Huber
,
A.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
, 2005, “
Thermoacoustic Stability Analysis of an Annular Combustion Chamber With Acoustic Low Order Modeling and Validation Against Experiment
,” ASME Paper No. 2005-GT-68797.
10.
Bohn
,
D.
, and
Deuker
,
E.
, 1993, “
An Acoustical Model to Predict Combustion Driven Oscillations
,”
20th International Congress on Combustion Engines
, London, UK.
11.
Deuker
,
E.
, 1995, “
Ein Beitrag zur Vorausberechnung des akustischen Stabilitätsverhaltens von Gasturbinen-Brennkammern mittels theoretischer und experimenteller Analyse von Brennkammerschwingungen
,” Ph.D. thesis, RWTH Aachen.
12.
Bloxsidge
,
G. J.
,
Dowling
,
A. P.
, and
Langhorne
,
P. J.
, 1988, “
Reheat Buzz: An Acoustically Coupled Combustion Instability. Part 2. Theory
,”
J. Fluid Mech.
0022-1120,
193
, pp.
445
473
.
13.
Bellucci
,
V.
,
Schuermans
,
B.
,
Nowak
,
D.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
, 2005, “
Thermoacoustic Modeling of a Gas Turbine Combustor Equipped With Acoustic Dampers
,”
ASME J. Turbomach.
0889-504X,
127
(
2
), pp.
372
379
.
14.
Moeck
,
J. P.
,
Bothien
,
M. R.
,
Schimek
,
S.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
, 2008, “
Subcritical Thermoacoustic Instabilities in a Premixed Combustor
,” AIAA Paper No. 2008-2946.
15.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2008, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
0022-1120,
615
, pp.
139
167
.
16.
Bechert
,
D. W.
, 1980, “
Sound Absorption Caused by Vorticity Shedding, Demonstrated With a Jet Flow
,”
J. Sound Vib.
0022-460X,
70
(
3
), pp.
389
405
.
17.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
, 2000, “
Excitation of Thermoacoustic Instabilities by Interaction of Acoustics and Unstable Swirling Flow
,”
AIAA J.
0001-1452,
38
(
6
), pp.
1025
1034
.
18.
Moeck
,
J. P.
,
Bothien
,
M. R.
,
Guyot
,
D.
, and
Paschereit
,
C. O.
, 2007, “
Phase-Shift Control of Combustion Instability Using (Combined) Secondary Fuel Injection and Acoustic Forcing
,”
Active Flow Control
(
Notes on Numerical Fluid Mechanics and Multidisciplinary Design
, Vol.
95
),
R.
King
, ed.,
Springer-Verlag
,
Berlin
, pp.
408
421
.
19.
Gustavsen
,
B.
, and
Semlyen
,
A.
, 1999, “
Rational Approximation of Frequency Domain Responses by Vector Fitting
,”
IEEE Trans. Power Deliv.
0885-8977,
14
(
3
), pp.
1052
1061
.
20.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
, 2008, “
Active Control of the Acoustic Boundary Conditions of Combustion Test Rigs
,”
J. Sound Vib.
0022-460X,
318
(
4–5
), pp.
678
701
.
21.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
, 2009, “
Assessment of Different Actuator Concepts for Acoustic Boundary Control of a Premixed Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
2
), p.
021502
.
22.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
, 2004, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,” ASME Paper No. GT2004-53831.
23.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
, 2002, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
2
), pp.
239
247
.
24.
Dowling
,
A. P.
,
Hooper
,
N.
,
Langhorne
,
P. J.
, and
Bloxsidge
,
G. J.
, 1988, “
Active Control of Reheat Buzz
,”
AIAA J.
0001-1452,
26
(
7
), pp.
783
790
.
25.
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
, 2007, “
Analysis and Control of Combustion Instabilities by Adaptive Reflection Coefficients
,” AIAA Paper No. 2007-3716.
26.
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
, 2008, “
Passive Control of the Inlet Acoustic Boundary of a Swirled Turbulent Burner
,” ASME Paper No. GT2008-50425.
27.
Martin
,
C. E.
,
Benoit
,
L.
,
Sommerer
,
Y.
,
Nicoud
,
F.
, and
Poinsot
,
T.
, 2006, “
Large-Eddy Simulation and Acoustic Analysis of a Swirled Staged Turbulent Combustor
,”
AIAA J.
0001-1452,
44
(
4
), pp.
741
750
.
28.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
, 1998, “
Structure and Control of Thermoacoustic Instabilities in a Gas-Turbine Combustor
,”
Combust. Sci. Technol.
0010-2202,
138
, pp.
213
232
.
29.
Cohen
,
J. M.
, and
Banaszuk
,
A.
, 2003, “
Factors Affecting the Control of Unstable Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
811
821
.
30.
Banaszuk
,
A.
,
Mehta
,
P.
,
Jacobson
,
C.
, and
Khibnik
,
A.
, 2006, “
Limits of Achievable Performance of Controlled Combustion Processes
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
14
(
5
), pp.
881
895
.
31.
Moeck
,
J. P.
,
Bothien
,
M. R.
,
Paschereit
,
C. O.
,
Gelbert
,
G.
, and
King
,
R.
, 2007, “
Two Parameter Extremum Seeking for Control of Thermoacoustic Instabilities and Characterization of Linear Growth
,” AIAA Paper No. 2007-1416.
32.
Lieuwen
,
T. C.
, 2002, “
Experimental Investigation of Limit-Cycle Oscillations in an Unstable Gas Turbine Combustor
,”
J. Propul. Power
0748-4658,
18
(
1
), pp.
61
67
.
33.
Isella
,
G.
,
Seywert
,
C.
,
Culick
,
F. E. C.
, and
Zukoski
,
E. E.
, 1997, “
A Further Note on Active Control of Combustion Instabilities Based on Hysteresis
,”
Combust. Sci. Technol.
0010-2202,
126
, pp.
381
388
.
34.
Lepers
,
J.
,
Krebs
,
W.
,
Prade
,
B.
,
Flohr
,
P.
,
Pollarolo
,
G.
, and
Ferrante
,
A.
, 2005, “
Investigation of Thermoacoustic Stability Limits of an Annular Gas Turbine Combustor Test-Rig With and Without Helmholtz Resonators
,” ASME Paper No. GT2005-68246.
35.
Rowley
,
C. W.
,
Williams
,
D. R.
,
Colonius
,
T.
,
Murray
,
R. M.
, and
Macmynoski
,
D. G.
, 2006, “
Linear Models for Control of Cavity Flow Oscillations
,”
J. Fluid Mech.
0022-1120,
547
, pp.
317
330
.
36.
Poinsot
,
T.
,
Bourienne
,
F.
,
Candel
,
S.
,
Esposito
,
E.
, and
Lang
,
W.
, 1989, “
Suppression of Combustion Instabilities by Active Control
,”
J. Propul. Power
0748-4658,
5
(
1
), pp.
14
20
.
37.
Poinsot
,
T.
,
Yip
,
B.
,
Veynante
,
D.
,
Trouv’e
,
A.
,
Samaniego
,
J. M.
, and
Candel
,
S.
, 1992, “
Active Control: An Investigation Method for Combustion Instability
,”
J. Phys. III
1155-4320,
2
(
7
), pp.
1331
1357
.
38.
Heckl
,
M. A.
, 1990, “
Non-Linear Acoustic Effects in the Rijke Tube
,”
Acustica
0001-7884,
72
, pp.
63
71
.
39.
Bothien
,
M. R.
, and
Paschereit
,
C. O.
, 2010, “
Tuning of the Acoustic Boundary Conditions of Combustion Test Rigs With Active Control: Extension to Actuators With Nonlinear Response
,”
ASME J. Eng. Gas Turbines Power
0742-4795, in press.
You do not currently have access to this content.