A computational approach has been undertaken to design and assess potential Fe–Cr–Ni–Al systems to produce stable nanostructured corrosion-resistant coatings that form a protective, continuous scale of alumina or chromia at elevated temperatures. The phase diagram computation was modeled using the THERMO-CALC® software and database (Thermo-Calc® Software, 2007, THERMO-CALC for Windows Version 4, Thermo-Calc Software AB, Stockholm, Sweden; Thermo-Calc® Software, 2007, TCFE5, Version 5, Thermo-Calc Software AB, Stockholm, Sweden) to generate pseudoternary Fe–Cr–Ni–Al phase diagrams to help identify compositional ranges without the undesirable brittle phases. The computational modeling of the grain growth process, sintering of voids and interface toughness determination by indentation, assessed microstructural stability, and durability of the nanocoatings fabricated by a magnetron-sputtering process. Interdiffusion of Al, Cr, and Ni was performed using the DICTRA® diffusion code (Thermo-Calc Software®, DICTRA, Version 24, 2007, Version 25, 2008, Thermo-Calc Software AB, Stockholm, Sweden) to maximize the long-term stability of the nanocoatings. The computational results identified a new series of Fe–Cr–Ni–Al coatings that maintain long-term stability and a fine-grained microstructure at elevated temperatures. The formation of brittle σ-phase in Fe–Cr–Ni–Al alloys is suppressed for Al contents in excess of 4wt%. The grain growth modeling indicated that the columnar-grained structure with a high percentage of low-angle grain boundaries is resistant to grain growth. Sintering modeling indicated that the initial relative density of as-processed magnetron-sputtered coatings could achieve full density after a short thermal exposure or heat-treatment. The interface toughness computation indicated that the Fe–Cr–Ni–Al nanocoatings exhibit high interface toughness in the range of 52366J/m2. The interdiffusion modeling using the DICTRA software package indicated that inward diffusion could result in substantial to moderate Al and Cr losses from the nanocoating to the substrate during long-term thermal exposures.

1.
Wang
,
F. -H.
, 1997, “
The Effect of Nanocrystallization on the Selective Oxidation and Adhesion of Al2O3 Scales
,”
Oxid. Met.
0030-770X,
48
, pp.
215
223
.
2.
Liu
,
Z. -Y.
,
Gao
,
W.
,
Dahm
,
K. L.
, and
Wang
,
F. -H.
, 1998, “
Oxidation Behaviour of Sputter-Deposited Ni–Cr–Al Micro-Crystalline Coatings
,”
Acta Mater.
1359-6454,
46
, pp.
1691
1700
.
3.
Liu
,
Z. -Y.
, and
Gao
,
W.
, 1998, “
Oxidation Behaviours of Microcrystalline Ni–Cr–Al Alloy Coatings at 900°C
,”
Scr. Mater.
1359-6462,
38
, pp.
877
885
.
4.
Chen
,
G. -F.
, and
Lou
,
H. -Y.
, 1999, “
The Effect of Nanocrystallization on the Oxidation Resistance of Ni–5Cr–5Al Alloy
,”
Scr. Mater.
1359-6462,
41
, pp.
883
887
.
5.
Chen
,
G. -F.
, and
Lou
,
H. -Y.
, 1999, “
Oxidation Behavior of Sputtered Ni–3Cr–20 Al Nanocrystalline Coating
,”
Mater. Sci. Eng., A
0921-5093,
A271
, pp.
360
365
.
6.
Liu
,
Z. -Y.
,
Gao
,
W.
,
Dahm
,
K. L.
, and
Wang
,
F. -H.
, 1998, “
Improved Oxide Spallation Resistance of Microcrystalline Ni–Cr–Al Coatings
,”
Oxid. Met.
0030-770X,
50
, pp.
51
69
.
7.
Chen
,
G.
, and
Lou
,
H.
, 2000, “
Oxidation Behavior of Sputtered Ni–Cr–Al–Ti Nanocrystalline Coating
,”
Surf. Coat. Technol.
0257-8972,
123
, pp.
92
96
.
8.
Chen
,
G. -F.
, and
Lou
,
H. -Y.
, 2000, “
Effect of Nanocrystallization on the Oxidation Behavior of a Ni–8Cr–3.5 Al Alloy
,”
Oxid. Met.
0030-770X,
54
, pp.
155
162
.
9.
Ajdelsztajn
,
L.
,
Tang
,
F.
,
Kim
,
G. E.
,
Provenzano
,
V.
, and
Shoenung
,
J. M.
, 2005, “
Synthesis and Oxidation Behavior of Nanocrystalline MCrAlY Bond Coats
,”
J. Therm. Spray Technol.
1059-9630,
14
, pp.
23
30
.
10.
Cheruvu
,
N. S.
, 2008, “
Nanostructured Coatings by Pulsed Plasma Processing for Alloys used in Coal-Fired Environments
,” Department of Energy, Small Business Technology Transfer (STTR) Program, SwRI Fourth Quarterly Report to Karta Technologies, Report No. DE-FG02-5ER 86249.
11.
Liu
,
Z. -Y.
,
Gao
,
W.
, and
Li
,
M. -S.
, 1999, “
Cyclic Oxidation of Sputter-Deposited Nanocrystalline Fe–Cr–Ni–Al Alloy Coatings
,”
Oxid. Met.
0030-770X,
51
, pp.
403
419
.
12.
Liu
,
Z.
,
Gao
,
W.
, and
He
,
Y.
, 1999, “
Oxidation Behaviour of Nanocrystaliine Fe–Ni–Cr–Al Alloy Coatings
,”
Mater. Sci. Technol.
0267-0836,
15
, pp.
1447
1450
.
13.
He
,
Y.
,
Pang
,
H.
,
Qi
,
H.
,
Wang
,
D.
,
Li
,
Z.
, and
Gao
,
W.
, 2002, “
Micro-Crystalline Fe–Cr–Ni–Al–Y2O3 ODS Alloy Coatings Produced by High Frequency Electric-Spaak Deposition
,”
Mater. Sci. Eng., A
0921-5093,
334
, pp.
179
186
.
14.
Thermo-Calc® Software
, 2007, THERMO-CALC for Windows Version 4, Thermo-Calc Software AB, Stockholm, Sweden.
15.
Thermo-Calc® Software
, 2007, TCFE5, Version 5, Thermo-Calc Software AB, Stockholm, Sweden.
16.
Thermo-Calc® Software
, DICTRA, Version 24, Thermo-Calc Software AB, Stockholm, 2007; Version 25, 2008.
17.
Wright
,
I. G.
,
Pint
,
P. A.
,
Hall
,
L. M.
, and
Tortorelli
,
P. F.
, 2001,
Lifetimes Modeling of High-Temperature Corrosion Processes
,
M.
Schutze
,
W. J.
Quadakkers
, and
J. R.
Nicholls
, eds.,
Maney Publishing
,
London, England
, EFC Publications No.
34
, pp.
339
358
.
18.
Murphy
,
J. T.
,
Regina
,
J. R.
,
Deacon
,
R. M.
,
DuPont
,
J. N.
, and
Marder
,
A. R.
, 2005, “
High-Temperature Corrosion Resistance of Candidate FeAlCr Coatings in Low NOx Environments
,”
Proceedings of the 19th Annual Conference on Fossil Energy Materials
, Knoxville, TN, May 9–11.
19.
Pivin
,
J. C.
,
Delaunay
,
D.
,
Roques-Carmes
,
C.
,
Huntz
,
A. M.
, and
Lacombe
,
P.
, 1980, “
Oxidation Mechanism of Fe–Ni–20–25Cr–5Al Alloys-Influence of Small Amounts of Yttrium on Oxidation Kinetics and Oxide Adherence
,”
Corros. Sci.
0010-938X,
20
, pp.
351
373
.
20.
Huang
,
T. T.
,
Richter
,
R.
,
Chang
,
Y. L.
, and
Pfender
,
E.
, 1985, “
Formation of Aluminum Oxide Scales in Sulfur-Containing High Temperature Environments
,”
Metall. Trans. A.
,
16A
, pp.
2051
2059
. 0002-7820
21.
Karaminezhaad
,
M.
,
Kordzadeh
,
E.
, and
Bateni
,
M. R.
, 2004, “
The Effect of Nickel and Aluminum Addition on Oxidation Behavior of Austenitic Heat Resistance Steels
,”
Journal of Corrosion Science and Engineering
,
7
(
4
), pp.
1
11
, Paper 4. 0002-7820
22.
Yamada
,
S.
,
Tadashi
,
H.
,
Kawamura
,
Y.
, and
Saburi
,
T.
, 2000, “
Alumina Surface Layer Formed by High Temperature Heat-Treatment of Fe-Cr-Ni-Al Alloy Intended for Blade Material
,”
J. High-Temp. Soc.
,
26
(
3
), pp.
131
137
.
23.
Gao
,
W.
,
Liu
,
Z.
, and
Li
,
Z.
, 2001, “
Nano- and Microcrystal Coatings and Their High-Temperature Applications
,”
Adv. Mater.
0935-9648,
13
(
12–13
), pp.
1001
1004
.
24.
Pint
,
B. A.
,
Peraldi
,
R.
, and
Maziasz
,
P. J.
, 2004, “
The Use of Model Alloys to Develop Corrosion-Resistant Stainless Steels
,”
Mater. Sci. Forum
0255-5476,
461–464
, pp.
815
822
.
25.
Brady
,
M. P.
,
Yamamoto
,
Y.
,
Santella
,
M. L.
, and
Pint
,
B. A.
, 2007, “
Effects of Minor Alloy Additions and Oxidation Temperature on Protective Alumina Scale Formation in Creep-Resistant Austenitic Stainless Steels
,”
Scr. Mater.
1359-6462,
57
, pp.
1117
1120
.
26.
Yamamoto
,
Y.
,
Brady
,
M. P.
,
Lu
,
Z. P.
,
Maziasz
,
P. J.
,
Liu
,
C. T.
,
Pint
,
B. A.
,
More
,
K. L.
,
Meyer
,
H. M.
, and
Payzant
,
E. A.
, 2007, “
Creep-Resistant Al2O3-Forming Austenitic Stainless Steels
,”
Science
0036-8075,
316
, pp.
433
436
.
27.
Pint
,
B. A.
,
Zhang
,
Y.
,
Walker
,
L. R.
, and
Wright
,
I. G.
, 2007, “
Long-Term Performance of Aluminide Coatings on Fe-Based Alloys
,”
Surf. Coat. Technol.
0257-8972,
202
, pp.
637
642
.
28.
Hillert
,
M.
, 1965, “
On the Theory of Normal and Abnormal Grain Growth
,”
Acta Metall.
0001-6160,
13
, pp.
227
238
.
29.
Sidor
,
Y.
,
Kovac
,
F.
, and
Petrychka
,
V.
, 2005, “
Secondary Recrystallization in Non-Oriented Electrical Steels
,”
Metabk
,
44
(
3
), pp.
169
174
. 0002-7820
30.
Johnson
,
D. L.
, and
Cutler
,
I. B.
, 1963, “
Diffusion Sintering: I, Initial Stage Sintering Models and Their Application to Shrinkage of Powder Compacts
,”
J. Am. Ceram. Soc.
0002-7820,
46
(
11
), pp.
541
545
.
31.
Drory
,
M. D.
, and
Hutchinson
,
J. W.
, 1996, “
Measurement of the Adhesion of a Brittle Film on a Ductile Substrate by Indentation
,”
Proc. R. Soc. London, Ser. A
0950-1207,
452
, pp.
2319
2341
.
32.
Volinsky
,
A. A.
,
Moody
,
N. R.
, and
Berberich
,
W. W.
, 2002, “
Interfacial Toughness Measurements for Thin Films on Substrates
,”
Acta Mater.
1359-6454,
50
, pp.
441
466
.
33.
Bangaru
,
N. V.
, and
Krutenat
,
R. C.
, 1984, “
Diffusion Coatings of Steels: Formation Mechanism and Microstructure of Aluminized Heat-Resistant Stainless Steels
,”
J. Vac. Sci. Technol. B
1071-1023,
2
, pp.
806
815
.
34.
Zhang
,
Y.
,
Liu
,
A. P.
, and
Pint
,
B. A.
, 2007, “
Interdiffusional Degradatino of Oxidation-Resistant Aluminide Coatings on Fe-Based Alloys
,”
Mater. Corros.
0947-5117,
58
, pp.
751
761
.
35.
Evans
,
H. E.
,
Donaldson
,
A. T.
, and
Gilmour
,
T. C.
, 1999, “
Mechanisms of Breakaway Oxidation and Application to a Chromia-Forming Steel
,”
Oxid. Met.
0030-770X,
52
(
5–6
), pp.
379
402
.
36.
Peraldi
,
R.
, and
Pint
,
B. A.
, 2004, “
Effect of Cr and Ni Contents on the Oxidation Behavior of Ferritic and Austenitic Model Alloys in Air With Water Vapor
,”
Oxid. Met.
0030-770X,
61
(
5/6
), pp.
463
483
.
37.
Castello
,
P.
,
Guttmann
,
V.
,
Farr
,
N.
, and
Smith
,
G.
, 2000, “
Laboratory-Simulated Fuel-Ash Corrosion of Superheater Tubes in Coal-Fired Ultra-Supercritical-Boilers
,”
Mater. Corros.
0947-5117,
51
, pp.
786
790
.
38.
Hack
,
H.
, and
Stanko
,
G.
, 2006, “
Update on Fireside Corrosion Resistance of Advanced Materials for Ultra-Supercritical Coal-Fired Power Plants
,” Presented at the 31st International Technical Conference on Coal Utilization & Fuel Systems, Sand Key Island, FL, May 1–26.
You do not currently have access to this content.