The penetration of a jet of fluid into a traversal moving stream is a basic configuration of a wide range of engineering applications, such as film cooling and V/STOL aircrafts. This investigation examines experimentally the effect of blowing ratio of fans in crossflow, and numerically, the effect of the swirl velocity of jets in crossflow, downstream of the injection hole. The experimental results indicated an agreement with typically straight jets in crossflow (no vorticity), illustrating that the trace of the jet, remains close to the wall and subsequently enhance cooling at low blowing ratios in the case of turbine blade applications. However, the rotation of the jet results in an imparity between the two parts of the counter rotating vortex pair and as a consequence, the injected fluid not only bends in the direction of the main stream but also diverts in the direction of the rotation in order to conserve its angular momentum. The induction of the swirl velocity on the injected jet destructs one of the two parts of the kidney vortex, which entrains fluid from the crossflow to the jet promoting the mixing between the two fluids while the trace of a swirled jet remains closer to the wall downstream of the injection hole. Finally, the use of contrarotating jet or fan configurations reduces the wall shear stress in a very great extent, leading to better thermal protection of turbine blades, as well as cancels out the yaw torques of each fan separately, resulting in better flight control of typical lift surface.

1.
Metzger
,
D. E.
, 1985, “
Cooling Techniques for Gas Turbine Airfoils
,” Paper No. AGARD-CP-390, pp.
1
12
.
2.
Weigand
,
B.
, and
Spring
,
S.
, 2009, “
Multiple Jet Impingement
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, Aug. 9–14.
3.
Kercher
,
D. M.
, 1998, “
A Film Cooling CFD Bibliography, 1971–1976
,”
Int. J. Rotating Mach.
1023-621X,
4
, pp.
61
72
.
4.
Kamotani
,
Y.
, and
Greber
,
I.
, 1972, “
Experiments on a Turbulent Jet in Crossflow
,”
AIAA J.
0001-1452,
10
(
11
), pp.
1425
1429
.
5.
Kamotani
,
Y.
, and
Greber
,
I.
, 1974, “
Experiments on Confined Turbulent Jets in Crossflow
,”
NASA
Report No. CR-2392.
6.
Gopalan
,
S.
,
Abraham
,
B. M.
, and
Katz
,
J.
, 2004, “
The Structure of a Jet in Crossflow at Low Velocity Ratios
,”
Phys. Fluids
0031-9171,
16
(
6
), pp.
2067
2087
.
7.
Bohn
,
D.
, and
Karsten
,
K.
, 1999, “
Influence of Bowing Ratio on Cooling Efficiency of Lateral Leading Edge Ejection
,” Florence, Italy, Sep. 5–10, Paper No. ISABE99-7200.
8.
Ratzlaff
,
J.
,
Orkwis
,
P. D.
, and
Sekar
,
B.
, 2005, “
A Numerical Study of 3D Turbulent Cooling Jet Interaction Over a Range of Blowing Ratios, Turbulence Intensity and Turbulent Length Scale
,”
ASME
Paper No. GT2005-68796.
9.
New
,
T. H.
,
Lim
,
T. T.
, and
Luo
,
S. C.
, 2003, “
Elliptic Jets in Crossflow
,”
J. Fluid Mech.
0022-1120,
494
, pp.
119
140
.
10.
Yuan
,
L. L.
,
Street
,
R.
, and
Ferziger
,
J. H.
, 1999, “
Large-Eddy Simulations of Round Jet in Crossflow
,”
J. Fluid Mech.
0022-1120,
379
, pp.
71
104
.
11.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
, 2003, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations With Different Hole Geometries
,”
ASME
Paper No. GT2003-38369.
12.
Burdet
,
A.
, and
Abhari
,
R. S.
, 2006, “
3D Flow Prediction and Improvement of Holes Arrangement of a Film Cooled Turbine Blade Using a Feature Based Jet Model
,”
ASME
Paper No. GT2006-91073.
13.
Brauckmann
,
D.
, and
Wolfersdorf
,
J. V.
, 2005, “
Influence of Compound Angle on Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient for a Row of Shaped Film Cooling Holes
,”
ASME
Paper No. GT2005-68036.
14.
Aga
,
V.
,
Mansour
,
M.
, and
Abhari
,
R. S.
, 2008, “
Aerothermal Performance of Streamwise and Compound Angled Pulsating Film Cooling Jets
,”
ASME
Paper No. GT2008-50678.
15.
Hu
,
Y.
, and
Ji
,
H.
, 2004, “
Numerical Study of the Effect of Blowing Angle on Cooling Effectiveness of an Effusion Cooling
,”
ASME
GT2004-54043.
16.
Mahjoob
,
S.
, and
Taeibi-Rahni
,
M.
, 2004, “
Computational Study of Parameters Affecting Turbulent Flat Plate Film Cooling
,”
ASME
GT2004-53027.
17.
Rigby
,
D. L.
, and
Heidmann
,
J. D.
, 2008, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,”
ASME
GT2008-51361.
18.
Na
,
S.
, and
Shih
,
T. I. P.
, 2006, “
Increasing Adiabatic Film Cooling Effectiveness by Using an Upstream Ramp
,”
ASME
Paper No. GT2006-91163.
19.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
, 2008, “
Double Jet Film Cooling for Highly Efficient Film Cooling With Low Blowing Ratios
,”
ASME
Paper No. GT2008-50073.
20.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
, 2006, “
Double Jet Injection of Cooling Air for Improved Film Cooling
,”
ASME
Paper No. GT2006-90854.
21.
Heidmann
,
J. D.
, 2008, “
A Numerical Study of Anti-Vortex Film Cooling Designs at High Velocity Ratios
,”
ASME
Paper No. GT2008-50845.
22.
Young
,
P.
,
Ding
,
S. T.
, and
Tao
,
Z.
, 2005, “
Numerical Investigation of the Rotation on the Film Cooling Over Flat Surface
,”
ASME
Paper No. GT2005-68553.
23.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Joslyn
,
H. D.
, 1980, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
81
87
.
24.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
63
70
.
25.
Ann
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2005, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Film-Cooled Blade Using Pressure Sensitive Paint
,”
ASME
Paper No. GT2005-68344
26.
Hobson
,
G. V.
,
Cheng
,
W. T.
,
Seaton
,
S. M.
,
Gannon
,
A.
, and
Platzer
,
M.
, 2004, “
Experimental and Computational Investigation of Crossflow Fan Propulsion for Lightweight VTOL Aircraft
,”
ASME
Paper No. GT2004-53468.
27.
Hess
,
A.
,
Frigh
,
P.
, and
Suarez
,
E.
, 2006, “
Challenges, Issues, and Lessons Implementing Prognostics for Propulsion Systems
,”
ASME
Paper No. GT2006-91279.
28.
Terzis
,
A.
,
Kalfas
,
A. I.
,
Zachos
,
P. K.
, and
Ramsden
,
K. W.
, 2009, “
Experimental Performance Evaluation of Axial Ventilators
,”
Ninth International Conference on Industrial Ventilation
, ETH Zurich, Switzerland, Oct. 18–21.
29.
Terzis
,
A.
,
Kyprianidis
,
K.
,
Pilidis
,
P.
, and
Kalfas
,
A. I.
, 2009, “
Comparative Performance Evaluation of a Multi-Stage Axial Fan Assembly
,” Paper No. ISABE2009-1187, Montreal, Canada, Sep. 7–11.
30.
Holloway
,
S. D.
,
Walters
,
D. K.
, and
Leylek
,
H. J.
, 2005, “
Computational Study of Jet in Crossflow and Film Cooling Using a New Unsteady-Based Turbulence Model
,”
ASME
Paper No. GT2005-68155.
31.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. C.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
, 2001, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
798
805
.
32.
Hoda
,
A.
, and
Achara
,
S.
, 2000, “
Predictions of a Film Coolant Jet in Crossflow With Different Turbulence Models
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
558
569
.
33.
Sarkar
,
S.
, and
Bose
,
T. K.
, 1995, “
Comparison of Different Turbulence Models for Prediction of Slot-Film Cooling: Flow and Temperature Field
,”
Numer. Heat Transfer, Part B
1040-7790,
28
(
2
), pp.
217
238
.
34.
Korakianitis
,
T.
,
Papagianidis
,
P.
, and
Vlachopoulos
,
N. E.
, 2002, “
Unsteady Flow/Quasi-Steady Heat Transfer Computations on a Turbine Rotor and Comparison With Experiments
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
152
159
.
35.
Muldoon
,
F.
, and
Acharya
,
S.
, 2009, “
DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
3118
3127
.
You do not currently have access to this content.