In this article a combined experimental and numerical investigation of the unsteady mixing flow of the ingestion gas and rim sealing air inside a rotating disk cavity was carried out. A new test rig was set up, and the experiments were conducted on a 1.5-stage turbine rotor disk and included pressure measurements. The flow structure of the mixing region of the ingestion gas and sealing air in cavity was measured using the particle image velocimetry (PIV) technique. To complement the experimental investigation and to aid in understanding the flow mechanism within the cavity, a three-dimensional (3D) unsteady computational fluid dynamic (CFD) analysis was undertaken. Both simulated and experimental results indicated that near the rotating disk, (i) a large amount of the ingestion gas will turn around and flow out the cavity due to the impact of the centrifugal force and the Coriolis force, (ii) a small amount of ingestion gas will mix transiently with the sealing air inside the cavity, whereas near the static disk, (iii) the ingestion gas will flow into the cavity along the static wall and mix with the sealing air.

References

1.
Eastwood
,
D.
,
Childs
,
P. R. N.
,
Scanlon
,
T. J.
,
Guijarro-Valencia
,
A.
,
Coren
,
D. D.
,
Long
,
C. A.
, and
Atkins
,
N. R.
,
2012
, “
Experimental Investigation of Turbine Stator Well Rim Seal, Re-Ingestion and Interstage Seal Flows Using Gas Concentration Techniques and Displacement Measurements
,”
ASME J. Gas Turbines Power
,
134
(
8
), p.
082501
.10.1115/1.4005967
2.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2006
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME
Paper No. GT2006-90853.10.1115/GT2006-90853
3.
Wang
,
C.-Z.
,
Johnson
,
B. V.
,
Cloud
,
D. F.
,
Vashist
,
T. K.
, and
Roy
,
R. P.
,
2006
, “
Rim Seal Ingestion Characteristics for Axial Gap Rim Seals in a Closely-Spaced Turbine Stage From a Numerical Simulation
,”
ASME
Paper No. GT2006-90965.10.1115/GT2006-90965
4.
Roy
,
R. P.
,
Zhou
,
D. W.
,
Ganesan
,
S.
,
Wang
,
C.-Z.
,
Paolillo
,
R. E.
, and
Johnson
,
B. V.
,
2007
, “
The Flow Field and Main Gas Ingestion in a Rotor–Stator Cavity
,”
ASME
Paper No. GT2007-27671.10.1115/GT2007-27671
5.
Johnson
,
B. V.
,
Wang
,
C.-Z.
, and
Roy
,
R. P.
,
2008
, “
A Rim Seal Orifice Model With 2 CDs and Effects of Swirl in Seals
,”
ASME
Paper No. GT2008-50650.10.1115/GT2008-50650
6.
Mirzamoghadam
,
A. V.
,
Heitland
,
G.
,
Morris
,
M. C.
,
Smoke
,
J.
,
Malak
,
M.
, and
Howe
,
J.
,
2008
, “
3D CFD Ingestion Evaluation of a High Pressure Turbine Rim Seal Disk Cavity
,”
ASME
Paper No. GT2008-50531.10.1115/GT2008-50531
7.
Julien
,
S.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Boutet-Blais
,
G.
, and
Lapointe
,
S.
,
2010
, “
Simulation of Flow Ingestion and Related Structures in a Turbine Disk Cavity
,”
ASME
Paper No. GT2010-22729.10.1115/GT2010-22729
8.
Schuepbach
,
P.
,
Rose
,
M. G.
,
Gier
,
J.
, and
Abhari
,
R. S.
,
2011
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
(
2
), p.
021011
.10.1115/1.4000578
9.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.10.1115/1.4001177
10.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.10.1115/1.4001178
11.
Owen
,
J. M.
,
Zhou
,
K. Y.
,
Pountney
,
O.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2012
, “
Theoretical Prediction of Ingress Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031012
.10.1115/1.4003070
12.
Owen
,
J. M.
,
Pountney
,
O.
, and
Lock
,
G. D.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part II: Combined Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031013
.10.1115/1.4003071
13.
Owen
,
J. M.
,
2012
, “
Theoretical Modelling of Hot Gas Ingestion Through Turbine Rim Seals
,”
Propul. Power Res.
,
1
(
1
), pp.
1
11
.10.1016/j.jppr.2012.10.002
14.
Zhou
,
K. Y.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2011
, “
Computation of Ingestion Through Gas Turbine Rim Seals
,”
ASME
Paper No. GT2011-45314.10.1115/GT2011-45314
15.
Zhou
,
K. Y.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2013
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME J. Turbomach.
,
135
(
2
), p.
021014
.10.1115/1.4006601
16.
Sangan
,
C.
,
Pountney
,
O.
,
Zhou
,
K. Y.
,
Wilson
,
M.
,
Owen
,
M. K.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021038
.10.1115/1.4007504
17.
Sangan
,
C.
,
Pountney
,
O.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part II: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021026
.10.1115/1.4007504
18.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurement of Ingestion Through Turbine Rim Seals—Part III: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.10.1115/1.4007504
19.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Teuber
,
R.
,
Pountney
,
O. J.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2013
,”
Experimental Measurement of Ingestion Through Turbine Rim Seals—Part 4: Off-Design Conditions
,”
ASME
Paper No. GT2013-94147.10.1115/GT2013-94147
20.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurement of Ingestion Through Turbine Rim Seals—Part 5: Fluid Dynamics of Wheel-Space
,”
ASME
Paper No. GT2013-94148.10.1115/GT2013-94148
You do not currently have access to this content.