For small-scale organic Rankine cycles (ORCs) to be a competitive technology, it is reasonable to assume that the same turbine design will be implemented into a range of different applications. It is therefore critical to be able to predict turbine off-design performance over a range of different operating conditions while utilizing different working fluids. Similitude theory can be used for this purpose, and it has been well validated for ideal gases. However, the same cannot be said for its applications to the organic fluids found within ORCs. This paper considers a candidate subsonic turbine design operating with R245fa and the corresponding turbine performance map. Similitude theory is used to predict the performance of the same turbine operating at different inlet conditions using R245fa, R123, and R1234yf. The similitude predictions are compared to computational fluid dynamics (CFD) results obtained using ansys CFX. The original similitude theory using turbine total inlet conditions was found to only apply within a small range of operating conditions, so a modified similitude theory has been suggested that uses the choked flow conditions instead. This modified similitude theory agrees with the CFD predictions to within 2%, right up until the choked mass flow rate. Further studies considering supersonic turbines are required to establish the applicability of similitude for applications beyond the choked pressure ratio.

References

1.
Turboden
,
2014
, “
Turboden–Organic Rankine Cycle Turbogenerators for Clean Electric Energy Production
,” Turboden s.r.l., Brescia, Italy, accessed Nov. 15, 2015, www.turboden.eu
2.
ORMAT
,
2014
, “
ORMAT Technologies Inc
,” Ormat Techologies, Inc., Reno, NV, accessed Nov. 15, 2015, www.ormat.com
3.
Infinity Turbine
,
2014
, “
Infinity Turbine
,” Infinity Turbine LLC, Madison, WI, accessed Dec. 19, 2014, www.infinityturbine.com
4.
ElectraTherm
,
2014
, “
Energy Efficient Green Machine Heat to Power Generation System
,”
ElectraTherm, Inc.
,
Reno, NV
, accessed Dec. 09, 2014, www.electratherm.com
5.
Casati
,
E.
,
Vitale
,
S.
,
Pini
,
M.
, and
Persico
,
P.
,
2014
, “
Centrifugal Turbines for Mini-Organic Rankine Cycle Power Systems
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122607
.
6.
Lang
,
W.
,
Colonna
,
P.
, and
Almbauer
,
R.
,
2013
, “
Assessment of Waste Heat Recovery From a Heavy-Duty Truck Engine by Means of an ORC Turbogenerator
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042313
.
7.
Bracco
,
R.
,
Clemente
,
S.
,
Micheil
,
D.
, and
Reini
,
M.
,
2013
, “
Experimental Tests and Modelization of a Domestic-Scale ORC (Organic Rankine Cycle)
,”
Energy
,
58
, pp.
107
116
.
8.
Declaye
,
S.
,
Quoilin
,
S.
,
Guilliaume
,
L.
, and
Lemort
,
V.
,
2013
, “
Experimental Study on an Open-Drive Expander Integrated Into an ORC (Organic Rankine Cycle) System With R245fa as Working Fluid
,”
Energy
,
55
, pp.
173
183
.
9.
Leibowitz
,
H.
,
Smith
,
I. K.
, and
Stosic
,
N.
,
2006
, “
Cost Effective Small Scale ORC Systems for Power Recovery From Low Grade Heat Sources
,”
ASME
Paper No. IMECE2006-14284.
10.
Quoilin
,
S.
,
Van Den Broek
,
M.
,
Declaye
,
S.
,
Dewalleg
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
.
11.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2013
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.
12.
Saleh
,
B.
,
Koglbauer
,
G.
,
Wendland
,
M.
, and
Fischer
,
J.
,
2007
, “
Working Fluids for Low-Temperature Organic Rankine Cycles
,”
Energy
,
32
(
7
), pp.
1210
1221
.
13.
Tchanche
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
.
14.
Rashidi
,
M. M.
,
Beg
,
O. A.
,
Parsa
,
A. B.
, and
Nazari
,
F.
,
2011
, “
Analysis and Optimization of a Transcritical Power Cycle With Regenerator Using Artificial Neural Networks and Genetic Algorithms
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
225
(
6
), pp.
701
717
.
15.
Sun
,
J.
, and
Li
,
W.
,
2011
, “
Operation Optimization of an Organic Rankine Cycle (ORC) Heat Recovery Power Plant
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
2032
2041
.
16.
Wang
,
Z. Q.
,
Zhou
,
N. J.
,
Guo
,
J.
, and
Wang
,
X. Y.
,
2012
, “
Fluid Selection and Parametric Optimization of Organic Rankine Cycle Using Low Temperature Waste Heat
,”
Energy
,
40
(
1
), pp.
107
115
.
17.
Kang
,
S. H.
,
2012
, “
Design and Experimental Study of ORC (Organic Rankine Cycle) and Radial Turbine Using R245fa Working Fluid
,”
Energy
,
41
(
1
), pp.
514
524
.
18.
Inoue
,
N.
,
Kaneko
,
A.
,
Watanabe
,
H.
,
Uchimura
,
T.
, and
Irie
,
K.
,
2007
, “
Development of Electric Power Generation Unit Driven by Waste Heat (Study on Working Fluids and Expansion Turbines)
,”
ASME
Paper No. GT2007-27749.
19.
Li
,
J.
,
Pei
,
G.
,
Ji
,
J.
,
Bai
,
X.
,
Li
,
P.
, and
Xia
,
L.
,
2014
, “
Design of the ORC (Organic Rankine Cycle) Condensation Temperature With Respect to the Expander Characteristics for Domestic CHP (Combined Heat and Power) Applications
,”
Energy
,
77
, pp.
579
590
.
20.
Sauret
,
E.
, and
Gu
,
Y.
,
2014
, “
Three-Dimensional Off-Design Numerical Analysis of an Organic Rankine Cycle Radial-Inflow Turbine
,”
Appl. Energy
,
135
, pp.
202
211
.
21.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japiske
,
D.
,
2003
,
Axial and Radial Turbines
,
Concepts ETI
,
White River Junction, VT
.
22.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial In-Flow Turbine Design and Analysis
,
ASME
,
New York
.
23.
Manente
,
G.
,
Toffolo
,
A.
,
Lazzaretto
,
A.
, and
Paci
,
M.
,
2013
, “
An Organic Rankine Cycle Off-Design Model for the Search of the Optimal Control Strategy
,”
Energy
,
58
, pp.
97
106
.
24.
Calise
,
F.
,
Capuozzo
,
C.
,
Carontenuto
,
A.
, and
Vanoil
,
L.
,
2014
, “
Thermoeconomic Analysis and Off-Design Performance of an Organic Rankine Cycle Powered by Medium Temperature Heat Sources
,”
Solar Energy
,
103
, pp.
595
609
.
25.
Li
,
J.
,
Pei
,
G.
,
Li
,
Y.
,
Wang
,
D.
, and
Ji
,
J.
,
2013
, “
Examination of the Expander Leaving Loss in Variable Organic Rankine Cycle Operation
,”
Energy Convers. Manage.
,
65
, pp.
66
74
.
26.
Ventura
,
C. A. M.
,
Jacobs
,
P. A.
,
Rowlands
,
A. S.
,
Petrie-Repar
,
P.
, and
Sauret
,
E.
,
2012
, “
Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031102
.
27.
Pan
,
L.
, and
Wang
,
H.
,
2013
, “
Improved Analysis of Organic Rankine Cycle Based on Radial Flow Turbine
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
606
615
.
28.
Fiaschi
,
D.
,
Manfrida
,
G.
, and
Maraschiello
,
F.
,
2015
, “
Design and Performance Prediction of Radial ORC Turboexpanders
,”
Appl. Energy
,
138
, pp.
517
532
.
29.
Klonowicz
,
P.
,
Heberle
,
F.
,
Preissinger
,
M.
, and
Bruggermann
,
D.
,
2014
, “
Significance of Loss Correlations in Performance Prediction of Small Scale, Highly Loaded Turbine Stages Working in Organic Rankine Cycles
,”
Energy
,
72
, pp.
322
330
.
30.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-refprop: Version 9.1
,
National Institute of Standards and Technology, Standard Data Program
,
Gaithersburg, MD
.
31.
Wheeler
,
P. S.
, and
Ong
,
J.
,
2013
, “
The Role of Dense Gas Dynamics on Organic Rankine Cycle Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102603
.
32.
White
,
M.
, and
Sayma
,
A. I.
,
2015
, “
The One-Dimensional Meanline Design of Radial Turbines for Small Scale Low Temperature Organic Rankine Cycles
,”
ASME
Paper No. GT2015-44133.
33.
Lujan
,
J. M.
,
Serrano
,
J. R.
,
Dolz
,
V.
, and
Sanchez
,
J.
,
2012
, “
Model of the Expansion Process for R245fa in an Organic Rankine Cycle (ORC)
,”
Appl. Therm. Eng.
,
40
, pp.
248
257
.
34.
Wheeler
,
P. S.
, and
Ong
,
J.
,
2014
, “
A Study of the Three-Dimensional Unsteady Real-Gas Flows Within a Transonic ORC Turbine
,”
ASME
Paper No. GT2014-25475.
You do not currently have access to this content.