The fatigue behavior of a specific inner casing of a 1000 MW supercritical steam turbine was investigated during a complete startup phase. The Ramberg–Osgood model and Manson–Coffin strain-life law were used to describe the stress–strain behavior and calculate the damage. The temperature variation during the startup phase revealed that the startup phase could be divided into a warming-up phase, transition phase, and elevated temperature phase. The thermal stress that dominated in the inner casing could also be divided into the same three phases. The damage caused by the alternating stress during the warming-up phase was around 70% of the total damage. The remaining 30% of the damage was contributed by the transition and elevated temperature phases. The fatigue life was improved by shortening the warming-up phase and extending the elevated temperature phase. The damage was reduced by approximately 20%.

References

1.
Spencer
,
D. P.
,
1985
, “
Residual Life Evaluation of a 20 MW Turbine Casing
,”
Fracture and Fracture Mechanics: Case Studies
, R. B. Tait and G. G. Garrett, eds., Pergamon Press, Oxford, UK, pp.
217
223
.10.1016/B978-0-08-031659-8.50027-7
2.
Rao
,
P. D.
,
Sarkar
,
A.
, and
Sastri
,
V. M. K.
,
1993
, “
Finite Element Analysis of the Three-Dimensional Transient Temperature Field in Steam Turbine Casings
,”
Int. J. Mech. Sci.
,
35
(
7
), pp.
587
595
.10.1016/0020-7403(93)90003-D
3.
Hakl
,
J.
,
Bielak
,
O.
, and
Vlasak
,
T.
,
2001
, “
Residual Life Assessment of Steam Turbine Casing Containing Crack Defect
,”
Int. J. Pressure Vessels Piping
,
78
(
11–12
), pp.
977
984
.10.1016/S0308-0161(01)00112-0
4.
Choi
,
W.
, and
Hyun
,
J.
,
2008
, “
A Life Assessment for Steam Turbine Casing Using Inelastic Analysis
,”
Mod. Phys. Lett. B.
,
22
(
11
), pp.
1141
1146
.10.1142/S0217984908015978
5.
Choi
,
W.
,
Fujiyama
,
K.
,
Kim
,
B.
, and
Song
,
G.
,
2012
, “
Development of Thermal Stress Concentration Factors for Life Assessment of Turbine Casings
,”
Int. J. Pressure Vessels Piping
,
98
, pp.
1
7
.10.1016/j.ijpvp.2012.07.001
6.
Bakic
,
G.
,
Zeravcic
,
V. S.
,
Dukic
,
M.
,
Rajicic
,
B.
, and
Tasic
,
M.
,
2014
, “
Remaining Life Assessment of a High Pressure Turbine Casing in Creep and Low Cycle Service Regime
,”
Therm. Sci.
,
18
(
11
), pp.
S127
S138
.10.2298/TSCI121219179B
7.
Cheong
,
K. S.
, and
Karstensen
,
A. D.
,
2009
, “
Integrity Assessment of an Embrittled Steam Turbine Casing
,”
Int. J. Pressure Vessels Piping
,
86
(
4
), pp.
265
272
.10.1016/j.ijpvp.2008.11.025
8.
Mirandola
,
A.
,
Stoppato
,
A.
, and
Casto
,
E. L.
,
2010
, “
Evaluation of the Effects of the Operation Strategy of a Steam Power Plant on the Residual Life of Its Devices
,”
Energy
,
35
(
2
), pp.
1024
1032
.10.1016/j.energy.2009.06.024
9.
Stoppato
,
A.
,
Mirandola
,
A.
,
Meneghetti
,
G.
, and
Casto
,
E. L.
,
2012
, “
On the Operation Strategy of Steam Power Plants Working at Variable Load: Technical and Economic Issues
,”
Energy
,
37
(
1
), pp.
228
236
.10.1016/j.energy.2011.11.042
10.
Spelling
,
J.
,
Jocker
,
M.
, and
Martin
,
A.
,
2012
, “
Thermal Modeling of a Solar Steam Turbine With a Focus on Start-Up Time Reduction
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
013001
.10.1115/1.4004148
11.
Kosman
,
G.
, and
Rusin
,
A.
,
2001
, “
The Influence of the Start-Ups and Cyclic Loads of Steam Turbines Conducted According to European Standards on the Component's Life
,”
Energy
,
26
(
12
), pp.
1083
1099
.10.1016/S0360-5442(01)00071-8
12.
Marinescu
,
G.
,
Mohr
,
W. F.
,
Ehrsam
,
A.
,
Ruffino
,
P.
, and
Sell
,
M.
,
2014
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components—Temperature Measurements With Optical Probes and Natural Cooling Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
021602
10.1115/1.4025556
13.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress-Strain Curves by Three Parameters
,”
National Advisory Committee for Aeronautics
, Washington, DC, Technical Report Note No. 902.
14.
Mitchell
,
M. R.
,
1996
, “
Fundamentals of Modern Fatigue Analysis for Design
,” ASM Handbook, Vol. 19, S. R. Lampam, ed., ASM International, Materials Park, OH, pp.
229
249
.
15.
Manson
,
S. S.
,
1965
, “
Fatigue: A Complex Subject—Some Simple Approximations
,”
Exp. Mech.
,
5
(
4
), pp.
193
226
.10.1007/BF02321056
16.
Coffin
,
L. F.
,
1954
, “
A Study of the Effect of Cyclic Thermal Stresses on a Ductile Metal
,”
ASME Trans.
,
76
, pp.
931
950
.
17.
Saab
,
H. A.
, and
Nethercot
,
D. A.
,
1991
, “
Modeling Steel Frame Behavior Under Fire Conditions
,”
Eng. Struct.
,
13
(
4
), pp.
371
382
.10.1016/0141-0296(91)90024-7
18.
Mazzolani
,
F. M.
, and
Piluso
,
V.
,
1997
, “
Prediction of the Rotation Capacity of Aluminum Alloy Beams
,”
Thin-Walled Struct.
,
27
(
1
), pp.
103
116
.10.1016/0263-8231(96)00014-6
19.
Wong
,
S. C.
, and
Mai
,
Y. W.
,
1998
, “
Effect of Rubber Functionality on Mechanical and Fracture Properties of Impact-Modified Nylon 6.6/Polypropylene Blends
,”
Key Eng. Mater.
,
137
, pp.
55
62
.10.4028/www.scientific.net/KEM.137.55
20.
Hight
,
T. K.
, and
Brandeau
,
J. F.
,
1983
, “
Mathematical Modeling of the Stress-Strain Strain Rate Behavior of Bone Using the Ramberg–Osgood Equation
,”
J. Biomech.
,
16
(
6
), pp.
445
450
.10.1016/0021-9290(83)90076-3
21.
Mrozinski
,
S.
, and
Golanski
,
G.
,
2011
, “
Low Cycle Fatigue of GX12CrMoVNbN9-1 Cast Steel at Elevated Temperature
,”
J. Achiev. Mater. Manuf. Eng.
,
49
(1), pp.
7
16
.
You do not currently have access to this content.