A numerical evaluation of the effects of volcanic ash ingestion in a turbofan engine was carried out, with particular regard to the prediction of the erosion damage to fan blades. The ash concentration level examined in the study was below the flight limit because the aim of this study is to investigate the damage due to long-term exposure to low concentration levels. The work aims to the implementation of a numerical methodology that takes into account the geometry change of the fan blades during the exposure to volcanic ash. A dimensional and morphological characterization of a real volcanic ash sample from the Mount Etna volcano has been performed to model the particle flow dynamics using a computational fluid dynamics (CFD) code. The fan performance in terms of the total pressure increase was calculated for both the baseline and damaged geometries to quantify the performance deterioration trend with respect to the particle exposure time. For the calculation of the eroded fan performance, two different numerical approaches were considered. In the first approach, the erosion rate (ER) was evaluated based on the initial blade geometry and was held constant. In the second approach, the ER was updated as the erosion of the blade continued. The second approach shows a higher deterioration of the pressure rise across the fan, suggesting that the variation of the ER due to the blade shape modification cannot be neglected in the calculations.

References

1.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.10.1115/1.4006236
2.
Pieri
,
D. C.
, and
Oeding
,
R.
,
1991
, “
Preliminary Analyses of Volcanic Ash on an Aircraft Windscreen: The December 15, 1989 Redoubt Encounter
,”
Airborne Hazards From Volcanic Ash Colloquium
,
Boeing Aircraft, Seattle
,
WA
.
3.
Grindle
,
T. J.
, and
Burcham
,
F. W. J.
,
2003
, “
Engine Damage to a NASA DC-8-72 Airplane From a High-Altitude Encounter With a Diffuse Volcanic Ash Cloud
,” NASA Dryden Flight Research Center, Edwards, CA,
Technical Report No. NASA/TM-2003-212030
.
4.
Hamed
,
A.
,
Singh
,
D.
, and
Tabakoff
,
W.
,
1998
, “
Modeling of Compressor Performance Deterioration Due to Erosion
,”
Int. J. Rotating Mach.
,
4
(
4
), pp.
243
248
.10.1155/S1023621X98000207
5.
Balan
,
C.
, and
Tabakoff
,
W.
,
1983
, “
A Method of Predicting the Performance Deterioration of a Compressor Cascade Due to Sand Erosion
,”
AIAA
Paper No. 83-0178.10.1115/1.2720509
6.
Hamed
,
A.
, and
Tabakoff
,
W.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.10.2514/1.18462
7.
Dunn
,
M. G.
,
Padova
,
C.
,
Moller
,
J. E.
, and
Adams
,
R. M.
,
1987
, “
Performance Deterioration of a Turbofan and a Turbojet Engine Upon Exposure to a Dust Environment
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
336
343
.10.1115/1.3240045
8.
Balan
,
C.
, and
Tabakoff
,
W.
,
1984
, “
Axial Compressor Performance Deterioration
,”
AIAA
Paper No. 84-1208.10.2514/6.1984-1208
9.
Richardson
,
J. H.
,
Sallee
,
G. P.
, and
Smakula
,
F. K.
,
1979
, “
Causes of High Pressure Compressor Deterioration in Service
,”
AIAA
Paper No. 79-1234.10.2514/6.1979-1234
10.
Muir
,
D.
,
Saravanamutto
,
H.
, and
Marshall
,
D.
,
1989
, “
Health Monitoring of Variable Geometry Turbines for the Canadian Navy
,”
ASME J. Eng. Gas Turbines Power
,
111
(
2
), pp.
244
250
.10.1115/1.3240243
11.
Suzuki
,
M.
,
Inaba
,
K.
, and
Yamamoto
,
M.
,
2007
, “
Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor
,”
8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flow, Lyon, France
, July 2–5, Paper No. ISAIF8-0093.
12.
Kumar
,
A.
,
Nair
,
P. B.
, and
Keane
,
A. J.
,
2005
, “
Probabilistic Performance Analysis of Eroded Compressor Blades
,”
ASME
Paper No. PWR2005-50070.10.1115/PWR2005-50070
13.
Finnie
,
I.
,
1958
, “
The Mechanism of Erosion of Ductile Metals
,”
3rd U.S. National Congress of Applied Mechanics
, Providence, RI, June 11–14, pp. 527–532.
14.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
1
), pp.
5
21
.10.1016/0043-1648(63)90003-6
15.
Bitter
,
J. G. A.
,
1963
, “
A Study of Erosion Phenomena Part II
,”
Wear
,
6
(
3
), pp.
169
190
.10.1016/0043-1648(63)90073-5
16.
Neilson
,
J. H.
, and
Gilchrist
,
A.
,
1968
, “
Erosion by a Stream of Solid Particles
,”
Wear
,
11
(
2
), pp.
111
122
.10.1016/0043-1648(68)90591-7
17.
Dobrowolski
,
B.
, and
Wydrych
,
J.
,
2006
, “
Evaluation of Numerical Models for Prediction of Areas Subjected to Erosion Wear
,”
Int. J. Appl. Mech. Eng.
,
11
(
4
), pp.
735
749
.
18.
Corsini
,
A.
,
Rispoli
,
F.
,
Sheard
,
A.
, and
Venturini
,
P.
,
2012
, “
Numerical Simulation of Coal Flt-Ash Erosion in an Induced Draft Fan
,”
ASME
Paper No. GT2012-9048.10.1115/GT2012-69875
19.
Ghenaiet
,
A.
,
2012
, “
Effects of Solid Particle Ingestion Through an HP Turbine
,”
ASME
Paper No. GT2012-69875.10.1115/GT2012-69875
20.
Hamed
,
A.
, and
Tabakoff
,
W.
,
1994
, “
Experimental and Numerical Simulations of the Effects of Ingested Particles in Gas Turbine Engines
,”
Erosion, Corrosion and Foreign Object Effects in Gas Turbines
,
von Karman Institute, Rhode-St-Genese
,
Belgium
.
21.
Mele
,
D.
,
Dellino
,
P.
,
Sulpizio
,
R.
, and
Braia
,
G.
,
2011
, “
A Systematic Investigation on the Aerodynamics of Ash Particles
,”
J. Volcanol. Geotherm. Res.
,
203
(
1–2
), pp.
1
11
.10.1016/j.jvolgeores.2011.04.004
22.
Coltelli
,
M.
,
Miraglia
,
L.
, and
Scollo
,
S.
,
2008
, “
Characterization of Shape and Terminal Velocity of Tephra Particles Erupted During the 2002 Eruption of Etna Volcano
,”
Bull. Volcanol.
,
70
(
9
), pp.
1103
1112
.10.1007/s00445-007-0192-8
23.
Ersoy
,
O.
,
2012
, “
Surface Area and Volume Measurements of Volcanic Ash Particles by SEM Stereoscopic Imaging
,”
J. Volcanol. Geotherm. Res.
,
190
(
3–4
), pp.
290
296
.10.1016/j.jvolgeores.2009.12.006
24.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “
Laser Anemometer Measurements in a Transonic Axial Flow Fan Rotor
,” NASA Lewis Research Center, Cleveland, OH,
Technical Report No. NASA TP-2879
.
25.
Narejo
,
A. A.
,
2008
, “
3D Design and Simulations of NASA Rotor 67
,” Master’s thesis,
University West, Trollhättan
,
Sweden
.
26.
Iyengar
,
V.
,
2004
, “
Advanced Control Techniques for Modern Compressor Rotors
,” Special Problem Report, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.
27.
Ji
,
L.
,
Tian
,
Y.
,
Li
,
W.
,
Yi
,
W.
, and
Wen
,
Q.
,
2012
, “
Numerical Studies on Improving Performance of Rotor 67 by Blended Blade and Endwall Technique
,”
ASME
Paper No. GT2012-68535.10.1115/GT2012-68535
28.
Jinsheng
,
W.
,
Haiying
,
Q.
, and
Junzong
,
Z.
,
2011
, “
Experimental Study of Settling and Drag on Cuboids With Square Base
,”
Particuology
,
9
(
3
), pp.
298
305
.10.1016/j.partic.2010.11.002
29.
National Instruments, 2004, “IMAQ Vision for LabVIEW™ User Manual,” National Instruments, Austin, TX.
30.
ANSYS, 2012, “ANSYS FLUENT Theory Guide,” Release 14.5, ANSYS Inc., Canonsburg, PA.
31.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
32.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
, and
Zhu
,
J. A.
,
1995
, “
A new k–ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
239
.10.1016/0045-7930(94)00032-T
33.
Kim
,
S. E.
,
Choudhury
,
D.
, and
Patel
,
B.
,
1997
, “
Computations of Complex Turbulent Flows Using the Commercial Code ANSYS FLUENT
,”
ICASE/LaRC/AFOSR Symposium on Modeling Complex Turbulent Flows
, Hampton, VA, Aug. 11–13.
34.
Fan
,
L.
,
Yang
,
C.
,
Yu
,
G. Z.
, and
Mao
,
Z. S.
,
2003
, “
Empirical Correlation of Drag Coefficient for Settling Slender Particles With Large Aspect Ratio
,”
J. Chem. Ind. Eng.
,
54
(
10
), pp.
1501
1503
.
35.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.10.1016/0032-5910(89)80008-7
36.
Chen
,
X.
,
McLaury
,
B.-S.
, and
Shirazib
,
S.-A.
,
2006
, “
Numerical and Experimental Investigation of the Relative Erosion Severity Between Plugged Tees and Elbows in Dilute Gas/Solid Two-Phase Flow
,”
Wear
,
261
(
7
), pp.
715
729
.10.1016/j.wear.2006.01.022
37.
Eyler
,
R.
,
1987
, “
Design and Analysis of a Pneumatic Flow Loop
,” Master’s thesis,
West Virginia University
,
Morgantown, WV
.
38.
NPARC, 2008, “Examining Spatial (Grid) Convergence,” NPARC Alliance CFD Verification and Validation, NASA Glenn Research Center, Cleveland, OH, available at: http://www.grc.nasa.gov/WWW/wind/valid/tutorial/spatconv.html
39.
Hamed
,
A.
,
Tabakoff
,
W.
,
Rivir
,
R.
,
Das
,
K.
, and
Arora
,
P.
,
2004
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
.10.1115/1.1860376
40.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.10.1115/1.2836561
You do not currently have access to this content.