Square tabs were placed on the base of an ellipsoidal center-body (CB) in short annular diffusers. Tests were conducted in subsonic swirling flow with an inlet Reynolds number of 1 × 105. The tabs, with a projected height equivalent to the boundary layer thickness, reduced the outlet distortion and incurred a pressure penalty in the three smaller diffusers whose designs were not expected to stall. The largest area ratio (AR = 6.18) diffuser improved back pressure coefficient 4.6% with four tabs that blocked 4.7% of the inlet cross section over its bare diffuser but was 42% lower than that obtained by the AR = 2.73 diffuser with no tabs. Computational fluid dynamics (CFD) was useful for capturing relevant flow features that corroborated with experimental data and literature. Tabs oriented normal to the diffuser axis were less effective at influencing the flow as swirl angle increased but similar elongated wakes oriented with the flow direction were observed at all simulated swirl angles. The CFD either predicted equivalent performance due to the over-prediction associated with diffusion equaling the under-prediction associated with vorticity or over-predicted performance.

References

1.
Japikse
,
D.
, and
Baines
,
N. C.
,
1998
,
Diffuser Design Technology
,
Concepts ETI
,
White River Junction, VT
.
2.
Wright
,
A.
,
Lei
,
Z.
,
Mahallati
,
A.
,
Cunningham
,
M.
, and
Militzer
,
J.
,
2012
, “
Effects of Scalloping on the Mixing Mechanisms of Forced Mixers With Highly Swirling Core Flow
,”
ASME
Paper No. GT2012–70081.10.1115/GT2012-70081
3.
Lei
,
Z.
,
Mahallati
,
A.
,
Cunningham
,
M.
, and
Germain
,
P.
,
2012
, “
Effects of Core Flow Swirl on the Flow Characteristics of a Scalloped Forced Mixer
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111201
.10.1115/1.4005968
4.
Seddon
,
J.
,
1984
, “
Understanding and Countering the Swirl in S-Ducts: Tests on the Sensitivity of Swirl to Fences
,”
Aeronaut. J.
,
88
(
874
), pp.
117
127
.
5.
Weng
,
P. F.
, and
Guo
,
R. W.
,
1994
, “
New Method of Swirl Control in a Diffusing S-Duct
,”
AIAA J.
,
30
(
7
), pp.
1918
1919
.10.2514/3.11156
6.
Anderson
,
B. H.
, and
Gibb
,
J.
,
1996
, “
Vortex Generator Installation Studies on Steady State and Dynamic Inlet Distortion
,”
AIAA
Paper No. 96-3279.10.2514/6.1996-3279
7.
Japikse
,
D.
, and
Pampreen
,
R.
,
1979
, “
Annular Diffuser Performance for an Automotive Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
101
(
3
), pp.
358
371
.10.1115/1.3446584
8.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
,
1998
, “
Flow Development Through Interturbine Diffusers
,”
ASME J. Turbomach.
,
120
(
2
), pp.
298
304
.10.1115/1.2841406
9.
Zhang
,
X. F.
,
Hu
,
S.
,
Benner
,
M.
,
Gostelow
,
P.
, and
Vlasic
,
E.
,
2010
, “
Experimental and Numerical Study on an Inter-Turbine Duct
,”
ASME
Paper No. IMECE2010-37322.10.1115/IMECE2010-37322
10.
Thayer
,
E. B.
,
1971
, “
Evaluation of Curved-Wall Annular Diffusers
,”
ASME
Paper No. 71-WA/FE-35.
11.
Birk
,
A. M.
, and
VanDam
,
D.
,
1994
, “
Infra-Red Signature Suppression for Marine Gas Turbines: Comparison of Sea Trial and Model Test Results for the DRES Ball IRSS System
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
75
81
.10.1115/1.2906812
12.
Jirásek
,
A.
,
2006
, “
Design of Vortex Generator Flow Control in Inlets
,”
J. Aircr.
,
43
(
6
), pp.
1886
1892
.10.2514/1.21364
13.
Carletti
,
M. J.
,
Rogers
,
C. B.
, and
Parekh
,
D. E.
,
1995
, “
Use of Streamwise Vorticity to Increase Mass Entrainment in a Cylindrical Ejector
,”
AIAA J.
,
33
(
9
), pp.
1641
1645
.10.2514/3.12704
14.
Habchi
,
C.
,
Lemenand
,
T.
,
Della Valle
,
D.
, and
Peerhossaini
,
H.
,
2010
, “
Turbulence Behavior of Artificially Generated Vorticity
,”
J. Turbul.
,
11
(
36
), pp.
1
28
.10.1080/14685248.2010.510841
15.
Zaman
,
K. B. M. Q.
,
Reeder
,
M. F.
, and
Samimy
,
M.
,
1994
, “
Control of an Axisymmetric Jet Using Vortex Generators
,”
Phys. Fluids
,
6
(
2
), pp.
778
793
.10.1063/1.868316
16.
Ahuja
,
K.
, and
Brown
,
W.
,
1989
, “
Shear Flow Control by Mechanical Tabs
,”
AIAA
Paper No. 89-0994.10.2514/6.1989-994
17.
Hari
,
S.
, and
Kurian
,
J.
,
2001
, “
Effectiveness of Secondary Tabs for Supersonic Mixing
,”
Exp. Fluids
,
31
(
3
), pp.
302
308
.10.1007/s003480100285
18.
Bohl
,
D. G.
, and
Foss
,
J. F.
,
1999
, “
Near Exit Plane Effects Caused by Primary and Primary-Plus-Secondary Tabs
,”
AIAA J.
,
37
(
2
), pp.
192
201
.10.2514/2.713
19.
Behrouzi
,
P.
, and
McGuirk
,
J. J.
,
2006
, “
Effect of Tab Parameters on Near-Field Jet Plume Development
,”
J. Propul. Power
,
22
(
3
), pp.
576
585
.10.2514/1.15473
20.
Park
,
H.
,
Jeon
,
W.-P.
,
Choi
,
H.
, and
Yoo
,
J. Y.
,
2007
, “
Mixing Enhancement Behind a Backward-Facing Step Using Tabs
,”
Phys. Fluids
,
19
(
10
), p.
105103
.10.1063/1.2781597
21.
Carletti
,
M. J.
,
Rogers
,
C. B.
, and
Parekh
,
D. E.
,
1996
,
Parametric Study of Jet Mixing Enhancement by Vortex Generators, Tabs, and Deflector Plates
, Vol.
237
,
ASME
,
New York
, pp.
303
312
.
22.
Samimy
,
M.
,
Zaman
,
K. B. M. Q.
, and
Reeder
,
M. F.
,
1993
, “
Effect of Tabs on the Flow and Noise Field of an Axisymmetric Jet
,”
AIAA J.
,
31
(
4
), pp.
609
619
.10.2514/3.11594
23.
Reeder
,
M. F.
, and
Zaman
,
K. B. M. Q.
,
1996
, “
Impact of Tab Location Relative to the Nozzle Exit on Jet Distortion
,”
AIAA J.
,
34
(
1
), pp.
197
199
.10.2514/3.13044
24.
Reeder
,
M. F.
, and
Samimy
,
M.
,
1996
, “
The Evolution of a Jet With Vortex-Generating Tabs: Real-Time Visualization and Quantitative Measurements
,”
J. Fluid Mech.
,
311
(
3
), pp.
73
118
.10.1017/S0022112096002510
25.
Wood
,
C. C.
,
1951
, “
Preliminary Investigation of the Effects of Rectangular Vortex Generators on the Performance of a Short 1.9:1 Annular Diffuser
,” National Aeronautics and Space Administration, Washington, DC, Report No. NACA RM L51G09.
26.
Valentine
,
E. F.
, and
Carroll
,
R. B.
,
1951
, “
Effects of Several Arrangements of Rectangular Vortex Generators on the Static Pressure Rise Through a Short 2:1 Diffuser
,” National Aeronautics and Space Administration, Washington, DC, Report No. NACA RM L50L04.
27.
Valentine
,
E. F.
, and
Carroll
,
R. B.
,
1952
, “
Effects of Some Primary Variables of Rectangular Vortex Generators in the Static-Pressure Rise Through a Short Diffuser
,” National Aeronautics and Space Administration, Washington, DC, Report No. NACA RM L52B13.
28.
Kaldschmidt
,
G.
,
Syltebo
,
B.
, and
Ting
,
C.
,
1973
, “
A 727 Airplane Center Duct Inlet Low Speed Performance Confirmation Model Test for Refanned JT 8 D Engines, Phase 2
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA CR–134534.
29.
Sajben
,
M.
,
Chen
,
C. P.
, and
Kroutil
,
J. C.
,
1977
, “
A New Passive Boundary-Layer Control Device
,”
J. Aircr.
,
14
(
7
), pp.
654
660
.10.2514/3.58837
30.
Stevens
,
S. J.
, and
Williams
,
G. J.
,
1980
, “
The Influence of Inlet Conditions on the Performance of Annular Diffusers
,”
ASME J. Fluids Eng.
,
102
(
3
), pp.
357
363
.10.1115/1.3240694
31.
Jirásek
,
A.
,
2007
, “
Example of Integrated CFD and Experimental Studies: Design of Flow Control in the FOI-EIC-01 Inlet
,”
Third International Symposium on Integrating CFD and Experiments in Aerodynamics
, U.S. Air Force Academy, CO, June 20–21.
32.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, UK
.
33.
Lilley
,
D. G.
,
1999
, “
Annular Vane Swirler Performance
,”
J. Propul. Power
,
15
(
2
), pp.
248
252
.10.2514/2.5419
34.
Adams
,
D. W.
,
2013
, “
Improvements on Single Point Incremental Forming Through Electrically Assisted Forming, Contact Area Prediction and Tool Development
,” Ph.D. thesis, Queen's University, Kingston, ON, Canada.
35.
Gallington
,
R. W.
,
1980
, “
Measurement of Very Large Flow Angles With Non-Nulling Seven-Hole Probes
,” Aeronautics Digest, Paper No. USAFA-TR-80-17, pp.
60
88
.
36.
Crawford
,
J.
, and
Birk
,
A. M.
,
2013
, “
Improvements to Common Data Reduction and Calibration Methods for Seven Hole Probes
,”
ASME J. Fluids Eng.
,
135
(
2
), p.
031206
.10.1115/1.4023649
37.
Crawford
,
J.
, and
Birk
,
A. M.
,
2013
, “
Influence of Tip Shape on Reynolds Number Sensitivity for a Seven Hole Pressure Probe
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091602
.10.1115/1.4024950
38.
ANSYS Inc.
,
2013
,
ANSYS® Release 15.0: ANSYS FLUENT User's Guide
,
ANSYS Inc.
,
Canonsburg, PA
.
39.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k–ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
40.
Cerantola
,
D. J.
, and
Birk
,
A. M.
,
2015
, “
Experimental Validation of Numerically Optimized Short Annular Diffusers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
052604
.10.1115/1.4028679
41.
Cerantola
,
D. J.
,
2014
, “
Evaluation of Swirl and Tabs in Short Annular Diffusers
,” Ph.D. thesis, Queen's University, Kingston, ON, Canada.
42.
Cerantola
,
D. J.
, and
Birk
,
A. M.
,
2014
, “
Study of Tabs in a Short Annular Diffuser With a Strong Swirling Flow
,”
ASME
Paper No. GT2014-25567.10.1115/GT2014-25567
43.
Howard
,
J.
,
Thornton-Trump
,
A.
, and
Henseler
,
H.
,
1967
, “
Performance and Flow Regimes for Annular Diffusers
,”
ASME
Paper No. 67-WA/FE-21.
44.
Adenubi
,
S. O.
,
1976
, “
Performance and Flow Regime of Annular Diffusers With Axial Turbomachine Discharge Inlet Conditions
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
236
243
.10.1115/1.3448272
45.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
You do not currently have access to this content.