A numerical investigation of a low NOx partially premixed fuel nozzle for heavy-duty gas turbine applications is presented in this paper. Availability of results from a recent test campaign on the same fuel nozzle architecture allowed the exhaustive comparison study presented in this work. At first, an assessment of the turbulent combustion model was carried out, with a critical investigation of the expected turbulent combustion regimes in the system and taking into account the partially premixed nature of the flame due to the presence of diffusion type pilot flames. In particular, the fluent partially premixed combustion model and a flamelet approach are used to simulate the flame. The laminar flamelet database is generated using the flamelet generated manifold (FGM) chemistry reduction technique. Species and temperature are parameterized by mixture fraction and progress variable. Comparisons with calculations with partially premixed model and the steady diffusion flamelet (SDF) database are made for the baseline configuration in order to discuss possible gains associated with the introduced dimension in the FGM database (reaction progress), which makes it possible to account for nonequilibrium effects. Numerical characterization of the baseline nozzle has been carried out in terms of NOx. Computed values for both the baseline and some alternative premixer designs have been then compared with experimental measurements on the reactive test rig at different operating conditions and different split ratios between main and pilot fuel. Numerical results allowed pointing out the fundamental NOx formation processes, both in terms of spatial distribution within the flame and in terms of different formation mechanisms. The obtained knowledge would allow further improvement of fuel nozzle design.

References

1.
Correa
,
S. M.
,
1998
, “
Power Generation and Aero Propulsion Gas Turbines: From Combustion Science to Combustion Technology
,”
Proc. Combust. Inst.
,
27
(
2
), pp.
1793
1807
.
2.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
,
Taylor and Francis
,
Philadelphia, PA
.
3.
Lyons
,
V. J.
,
1982
, “
Fuel/Air Non-Uniformity Effect on Nitric Oxide Emissions
,”
AIAA J.
,
20
(
5
), pp.
660
665
.
4.
Fric
,
T. F.
,
1993
, “
Effects of Fuel Air Unmixedness on NOx Emissions
,”
J. Propul. Power
,
9
(
5
), pp.
708
713
.
5.
Polifke
,
W.
,
1995
,
Fundamental and Practical Limitations of NOx Reduction in Lean-Premixed Combustion
,
ABB Corporate Research
, Baden-Dätwil, Switzerland.
6.
Dunn-Rankin
,
D.
,
2007
,
Lean Combustion Technology and Control
,
Academic Press
,
Irvine, CA
.
7.
Albrecht
,
P.
,
2010
,
Strategy for Emissions and Instability Prevention in Gas Turbines
,
Technische Universität Berlin
,
Berlin
.
8.
Donini
,
A.
,
Bastiaans
,
R. J.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2014
, “
The Application of Flamelet-Generated Manifold in the Modeling of Stratified Premixed Cooled Flames
,”
ASME
Paper No. GT2014-26210.
9.
Raman
,
V.
, and
Pitsch
,
H.
,
2005
, “
Large-Eddy Simulation of a Bluff-Body-Stabilized Non-Premixed Flame Using a Recursive Filter-Refinement Procedure
,”
Combust. Flame
,
142
(4), pp.
329
347
.
10.
Nguyen
,
P.-D.
,
Vervisch
,
L.
,
Subramanian
,
V.
, and
Domingo
,
P.
,
2010
, “
Multidimensional Flamelet-Generated Manifolds for Partially Premixed Combustion
,”
Combust. Flame
,
157
(
1
), pp.
43
61
.
11.
Vreman
,
A.
,
Albrecht
,
B.
,
van Oijen
,
J.
,
de Goey
,
L.
, and
Bastiaans
,
R.
,
2008
, “
Premixed and Non-Premixed Generated Manifolds in Large-Eddy Simulation of Sandia Flame D and F
,”
Combust. Flame
,
153
(
3
), pp.
394
416
.
12.
Ramaekers
,
W.
,
van Oijen
,
J.
, and
de Goey
,
L.
,
2012
, “
Stratified Turbulent Bunsen Flames: Flame Surface Analysis and Flame Surface Density Modelling
,”
Combust. Theory Model.
,
16
(
6
), pp.
943
975
.
13.
Donini
,
A.
,
Martin
,
S.
,
Bastiaans
,
R.
,
van Oijen
,
J.
, and
de Goey
,
L.
,
2013
, “
Numerical Simulations of a Premixed Turbulent Confined Jet Flame Using the Flamelet Generated Manifold Approach With Heat Loss Inclusion
,”
ASME
Paper No. GT2013-94363.
14.
Donini
,
A.
,
Martin
,
S.
,
Bastiaans
,
R.
,
van Oijen
,
J.
, and
de Goey
,
L.
,
2013
, “
High Pressure Jet Flame Numerical Analysis of CO Emissions by Means of the Flamelet Generated Manifolds Technique
,”
11th International Conference of Numerical Analysis and Applied Mathematics
(
ICNAAM
), Rhodes, Sept. 21–27, Vol.
1558
, pp.
136
139
.
15.
Olbricht
,
C.
,
Hahn
,
F.
,
Ketelheun
,
A.
, and
Janicka
,
J.
,
2010
, “
Strategies for Presumed PDF Modeling for LES With Premixed Flamelet-Generated Manifolds
,”
J. Turbul.
,
11
(
38
), p. N38.
16.
van Oijen
,
J.
, and
de Goey
,
L.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.
17.
Innocenti
,
A.
,
Andreini
,
A.
,
Giusti
,
A.
,
Facchini
,
B.
,
Cerutti
,
M.
,
Ceccherini
,
G.
, and
Riccio
,
G.
,
2014
, “
Numerical Investigations of NOx Emissions of a Partially Premixed Burner for Natural Gas Operations in Industrial Gas Turbine
,”
ASME
Paper No. GT2014-26906.
18.
Andreini
,
A.
,
Facchini
,
B.
,
Innocenti
,
A.
, and
Cerutti
,
M.
,
2014
, “
Numerical Analysis of a Low NOx Partially Premixed Burner for Industrial Gas Turbine Applications
,”
Energy Procedia
,
45
, pp.
1382
1391
.
19.
Cerutti
,
M.
,
Modi
,
R.
,
Kalitan
,
D.
, and
Singh
,
K. K.
,
2015
, “
Design Improvement Survey for NOx Emissions Reduction of a Heavy-Duty Gas Turbine Partially Premixed Fuel Nozzle Operating With Natural Gas: Experimental Campaign
,”
ASME
Paper No. GT2015-43516.
20.
Zimont
,
V. L.
,
Moreu
,
V.
,
Battaglia
,
V.
, and
Modi
,
R.
,
2011
, “
RANS and LES Modelling of the GE10 Burner
,”
Energy Power Eng.
,
3
(
5
), pp.
607
615
.
21.
Ramaekers
,
W.
,
Albrecht
,
B.
,
van Oijen
,
J.
,
de Goey
,
L.
, and
Eggels
,
R.
,
2005
, “
The Application of Flamelet Generated Manifolds in Partially-Premixed Flames
,” Fluent Benelux User Group Meeting, Wavre, Belgium, Oct. 6–7, p. 3D.
22.
ANSYS
,
2011
,
ansys fluent-Theory Guide
, Release 14.0, ANSYS Inc., Canonsburg, PA.
23.
Missaghi
,
M.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Yap
,
L.
,
1990
, “
The Predictions of NO Emissions From an Industrial Burner
,”
American Flame Day Conference, San Francisco, Oct. 8–10
.
24.
DeSoete
,
G. G.
,
1975
, “
Overall Reaction Rates of NO and N2 Formation From Fuel Nitrogen
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
1093
1102
.
25.
Malte
,
P.
, and
Pratt
,
D.
,
1975
, “
Measurement of Atomic Oxygen and Nitrogen Oxides in Jet-Stirred Combustion
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
1061
1070
.
You do not currently have access to this content.