Small-scale distributed generation systems are expected to play a vital role in future energy supplies. Subsequently, power generation using micro-gas turbine (MGT) is getting more and more attention. In particular, externally fired micro-gas turbine (EFMGT) is preferred among small-scale distributed generators, mainly due to high fuel flexibility, high overall efficiency, environmental benefits, and low maintenance requirement. The goal of this work is to evaluate the performance of an EFMGT-based standalone polygeneration system with the help of computational simulation studies. The main focus of this work is to develop a dynamic model for an EFMGT. The dynamic model is accomplished by merging a thermodynamic model with a mechanical model of the rotor and a transfer function based control system model. The developed model is suitable for analyzing system performance particularly from thermodynamic and control point of view. Simple models for other components of the polygeneration systems, electrical and thermal loads, membrane distillation unit, and electrical and thermal storage, are also developed and integrated with the EFMGT model. The modeling of the entire polygeneration system is implemented and simulated in matlab/simulink environment. Available operating data from test runs of both the laboratory setups are used in this work for further analysis and validation of the developed model.

References

1.
Serra
,
L. M.
,
Lozano
,
M.-A.
,
Ramos
,
J.
,
Adriano
,
V. E.
, and
Silvia
,
A. N.
,
2009
, “
Polygeneration and Efficient Use of Natural Resources
,”
Energy
,
34
(
5
), pp.
575
586
.
2.
Willis
,
H. L.
,
2000
,
Distributed Power Generation: Planning and Evaluation
,
CRC Press
, Boca Raton, FL.
3.
Barsali
,
S.
,
De Marco
,
A.
,
Giglioli
,
R.
,
Ludovici
,
G.
, and
Possenti
,
A.
,
2015
, “
Dynamic of Biomass Power Plant Using Micro Gas Turbine
,”
Renewable Energy
,
80
, pp.
806
818
.
4.
Invernizzi
,
C.
,
Iora
,
P.
, and
Silva
,
P.
,
2007
, “
Bottoming Micro-Rankine Cycles for Micro-Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
100
110
.
5.
Nascimento
,
D.
,
Rosa
,
M. A.
,
Rodrigues
,
L. D.
,
Santos
,
E. C.
,
Gomes
,
E. E.
,
Dias
,
F. L.
,
Velásques
,
E. I.
, and
Carrillo
,
R. A.
,
2013
, “
Micro Gas Turbine Engine: A Review
,”
Progress in Gas Turbine Perform
,
E.
Benini
, ed.,
InTec, Rijeka, Croatia
.
6.
Pilavachi
,
P.
,
2002
, “
Mini- and Micro-Gas Turbines for Combined Heat and Power
,”
Appl. Therm. Eng.
,
22
(
18
), pp.
2003
2014
.
7.
Visser
,
W. P. J.
,
Shakariyants
,
S. A.
, and
Oostveen
,
M.
,
2011
, “
Development of a 3 kW Microturbine for CHP Applications
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042301
.
8.
Iora
,
P.
, and
Silva
,
P.
,
2013
, “
Innovative Combined Heat and Power System Based on a Double Shaft Intercooled Externally Fired Gas Cycle
,”
Appl. Energy
,
105
, pp.
108
115
.
9.
Camporeale
,
S. M.
,
Ciliberti
,
P. D.
,
Fortunato
,
B.
,
Torresi
,
M.
, and
Pantaleo
,
A. M.
,
2015
, “
Externally Fired Micro Gas Turbine and ORC Bottoming Cycle: Optimal Biomass/Natural Gas CHP Configuration for Residential Energy Demand
,”
ASME
Paper No. GT2015-43571.
10.
Al-Attab
,
K.
, and
Zainal
,
Z. A.
,
2015
, “
Externally Fired Gas Turbine Technology: A Review
,”
Appl. Energy
,
138
, pp.
474
487
.
11.
González
,
A.
,
Riba
,
J.-R.
,
Puig
,
R.
, and
Navarro
,
P.
,
2015
, “
Review of Micro- and Small-Scale Technologies to Produce Electricity and Heat From Mediterranean Forest's Wood Chips
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
143
155
.
12.
Shah
,
R. K.
,
2005
, “
Compact Heat Exchangers for Microturbines
,”
5th International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology
(
CHE2005
), Whistler, Canada, Sept. 11–16, Paper No. 26.
13.
Pantaleo
,
A. M.
,
Camporeale
,
S. M.
, and
Shah
,
N.
,
2013
, “
Thermo-Economic Assessment of Externally Fired Micro-Gas Turbine Fired by Natural Gas and Biomass: Applications in Italy
,”
Energy Convers. Manage.
,
75
, pp.
202
213
.
14.
Palayangoda
,
L.
,
2010
, “
Polygeneration System Modelling
,” M.Sc. thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
15.
Woodford
,
T.
,
Rodriguez
,
A. A.
,
Ambler
,
C.
, and
Sohier
,
P.
,
2012
, “
EU Islands: Towards a Sustainable Energy Future
,” Union of the Electricity Industry—EURELECTRIC, Brussels, Belgium, Technical Report No. 1888-1902.
16.
Vatten
,
S.
,
2000
, “
Facts on Water Supply and Sanitation in Sweden
,” Karléns Tryck AB, Stockholm, Sweden.
17.
Lindqvist
,
J.
,
2007
, “
Social, Economical and Technical Evaluation of a Reverse Osmosis Drinking Water Plant in the Stockholm Archipelago
,” M.Sc. thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
18.
Nakano
,
S.
,
Kishibe
,
T.
,
Yagi
,
M.
,
Tsubouchi
,
K.
, and
Shibata
,
T.
,
2015
, “
Starting Characteristic Analysis of a Radial Inflow Turbine for the Regenerative Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
061701
.
19.
Alkhudhiri
,
A.
,
Darwish
,
N.
, and
Hilal
,
N.
,
2011
, “
Membrane Distillation: A Comprehensive Review
,”
Desalination
,
287
, pp.
2
18
.
20.
Cheng
,
L.-H.
,
Wu
,
P.-C.
, and
Chen
,
J.
,
2009
, “
Numerical Simulation and Optimal Design of AGMD-Based Hollow Fiber Modules for Desalination
,”
Ind. Eng. Chem. Res.
,
48
(
10
), pp.
4948
4959
.
21.
Kullab
,
A.
,
2011
, “
Desalination Using Membrane Distillation Experimental and Numerical Study
,” Ph.D. thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
22.
Mohan
,
G.
,
Kumar
,
M.
, and
Martin
,
A.
,
2016
, “
Solar Thermal Polygeneration System for Cooling, Fresh Water, and Domestic Hot Water Supply: Experimental Analysis
,”
Renewable Energy in the Service of Mankind
, Vol.
2
,
Springer International Publishing
, Cham, Switzerland.
23.
Baina
,
F.
,
Malmquist
,
A.
,
Alejo
,
L.
, and
Fransson
,
T. H.
,
2015
, “
Effect of the Fuel Type on the Performance of an Externally Fired Micro Gas Turbine Cycle
,”
Appl. Therm. Eng.
,
87
, pp.
150
160
.
24.
Asgari
,
H.
,
Chen
,
X.
,
Menhaj
,
M. B.
, and
Sainudiin
,
R.
,
2013
, “
Artificial Neural Network-Based System Identification for a Single-Shaft Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
092601
.
25.
Asgari
,
H.
,
Chen
,
X. Q.
,
Menhaj
,
M. B.
, and
Sainudiin
,
R.
,
2012
, “
ANN-Based System Identification, Modelling and Control of Gas Turbines—A Review
,”
Adv. Mater. Res.
,
622–623
, pp.
611
617
.
26.
Lazzaretto
,
A.
, and
Toffolo
,
A.
,
2001
, “
Analytical and Neural Network Models for Gas Turbine Design and Off-Design Simulation
,”
Int. J. Thermodyn.
,
4
(
4
), pp.
173
182
.
27.
Rowen
,
W. I.
,
1983
, “
Simplified Mathematical Representations of Heavy-Duty Gas Turbines
,”
ASME J. Eng. Power
,
105
(
4
), pp.
865
869
.
28.
Torres
,
E.
,
Larragueta
,
J. M.
,
Eguia
,
P.
,
Mazón
,
J.
,
San Martín
,
J. I.
, and
Zamora
,
I.
,
2008
, “
Dynamic Performance of a Microturbine Connected to a Low Voltage Network
,” International Conference on Renewable Energies and Power Quality (
ICREPQ'08
), Santander, Spain, Mar. 12–14.
29.
Patel
,
G. J.
, and
Bohra
,
S. S.
,
2011
, “
Modeling and Analysis of MTG Based Isolated and Grid Connected System
,”
Nirma University International Conference on Engineering
, Ahmedabad, Gujarat, Dec. 8–10.
30.
Nagpal
,
M.
,
Moshref
,
A.
,
Morison
,
G. K.
, and
Kundur
,
P.
,
2001
, “
Experience With Testing and Modeling of Gas Turbines
,”
IEEE Power Engineering Society Winter Meeting
, Columbus, OH, Jan. 28–Feb. 1, pp.
652
656
.
31.
Ma
,
Z.
, and
Zhu
,
Z.
,
2009
, “
Thermodynamic Modelling and Performance Analysis of a Closed Endoreversible Indirectly-Fired Gas Turbine Cycle
,”
Int. J. Ambient Energy
,
30
(
4
), pp.
199
206
.
32.
Al-Hamdan
,
Q. Z.
, and
Ebaid
,
M. S. Y.
,
2006
, “
Modeling and Simulation of a Gas Turbine Engine for Power Generation
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
302
311
.
33.
Chen
,
Y.
,
Zhou
,
J.
,
Zhang
,
G.
, and
Hao
,
X.
,
2006
, “
Thermodynamic Modeling and Numerical Simulation of Single-Shaft Microturbine Performance
,” Sixth International Conference for Enhanced Building Operations (
ICEBO 2006
), Shenzhen, China, Nov. 6–9, Vol. IV, Paper No. ESL-IC-06-11-122.
34.
Velez
,
V.
,
2010
, “
Design of a Control Strategy for Optimal Operation of an Autonomous Distributed Generation System for Electricity and Heat
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
35.
Zimmermann
,
J. P.
,
2009
, “
End-Use Metering Campaign in 400 Households in Sweden: Assessment of the Potential Electricity Savings
,”
Enertech
, Eskilstuna, Sweden, Contract No. 17-05-2743.
36.
Johansson
,
A.
,
Wahlstrom
,
A.
,
Pettersson
,
U.
, and
Berggren
,
T.
,
2007
, “
Measurements of Water Use in Eight Dwellings, by Quantity and Time
,” The Swedish Energy Agency, Eskilstuna, Sweden, pp.
1273
1277
.
37.
Fry
,
A.
, and
Martin
,
R.
,
2005
, “
Water Facts and Trends
,” World Business Council for Sustainable Development, Geneva, Switzerland, p.
16
.
You do not currently have access to this content.