This paper reports the main findings of a numerical investigation aimed at characterizing the flow field and the wall heat transfer resulting from the interaction of a swirling flow provided by lean-burn injectors and a slot cooling system, which generates film cooling in the first part of the combustor liner. In order to overcome some well-known limitations of Reynolds-averaged Navier–Stokes (RANS) approach, e.g., the underestimation of mixing, the simulations were performed with hybrid RANS–large eddy simulation (LES) models, namely, scale-adaptive simulation (SAS)–shear stress transport (SST) and detached eddy simulation (DES)–SST, which are proving to be a viable approach to resolve the main structures of the flow field. The numerical results were compared to experimental data obtained on a nonreactive three-sector planar rig developed in the context of the EU project LEMCOTEC. The analysis of the flow field has highlighted a generally good agreement against particle image velocimetry (PIV) measurements, especially for the SAS–SST model, whereas DES–SST returns some discrepancies in the opening angle of the swirling flow, altering the location of the corner vortex. Also the assessment in terms of Nu/Nu0 distribution confirms the overall accuracy of SAS–SST, where a constant overprediction in the magnitude of the heat transfer is shown by DES–SST, even though potential improvements with mesh refinement are pointed out.

References

1.
ICAO
,
2010
, “
Enviromental Report, Aviation and Climate Change
,” International Civil Aviation Organization, Montreal, Canada, http://www.icao.int/environmental-protection/Documents/Publications/ENV_Report_2010.pdf
2.
Lazik
,
W.
, and
Doerr
,
T.
,
2008
, “
Development of Lean-Burn Low-NOx Combustion Technology at Rolls-Royce Deutschland
,”
ASME
Paper No. GT2008-51115.
3.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
CRC Press—Taylor & Francis
,
New York
.
4.
Behrendt
,
T.
,
Hassa
,
C.
, and
Gerendas
,
M.
,
2008
, “
Characterisation of Advanced Combustor Cooling Concepts Under Realistic Operating Conditions
,”
ASME
Paper No. GT2008-51191.
5.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121503
.
6.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2013
, “
Cooling Efficiency for Assessing the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME
Paper No. GT2013-94304.
7.
Andreini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2014
, “
Experimental Investigation of the Flow Field and the Heat Transfer on a Scaled Cooled Combustor Liner With Realistic Swirling Flow Generated by a Lean-Burn Injection System
,”
ASME J. Turbomach.
,
137
(
2
), p.
031012
.
8.
Patil
,
S.
,
Abraham
,
S.
, and
Ekkad
,
S.
,
2009
, “
Experimental and Numerical Investigation of Convective Heat Transfer in a Gas Turbine Can Combustor
,”
ASME
Paper No. GT2009-59377.
9.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2014
, “
Impact of Swirl Flow on the Penetration Behaviour and Cooling Performance of a Starter Cooling Film in Modern Lean Operating Combustion Chambers
,”
ASME
Paper No. GT2014-25520.
10.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
AIAA
Paper No. 2001-0879.
11.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2004
, “
Re-Visiting the Turbulent Scale Equation
,”
IUTAM Symposium One Hundred Years of Boundary Layer Research
,
Göttingen
,
Germany
, Aug. 12–14, pp.
279
290
.
12.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2004
, “
A Scale-Adaptive Simulation Model Using Two-Equation Models
,”
AIAA
Paper No. 2005-1095.
13.
Widenhorn
,
A.
,
Noll
,
B.
, and
Aigner
,
M.
,
2009
, “
Numerical Study of a Non-Reacting Turbulent Flow in a Gas Turbine Model Combustor
,”
AIAA
Paper No. 2009-647.
14.
Patil
,
S.
, and
Tafti
,
D.
,
2011
, “
Large Eddy Simulation of Flow and Convective Heat Transfer in a Gas Turbine Can Combustor With Synthetic Inlet Turbulence
,”
ASME
Paper No. GT2011-46561.
15.
Kao
,
Y.-H.
,
Tambe
,
S. B.
, and
Jeng
,
S.-M.
,
2014
, “
Aerodynamics Study of a Linearly-Arranged 5-Swirler Array
,”
ASME
Paper No. GT2014-25094.
16.
Syred
,
N.
,
2006
, “
Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
17.
Kern
,
M.
,
Marinov
,
S.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Peschiulli
,
A.
, and
Turrini
,
F.
,
2011
, “
Characteristics of an Ultra-Lean Swirl Combustor Flow by LES and Comparison to Measurements
,”
ASME
Paper No. GT2011-45300.
18.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
19.
Menter
,
F. R.
,
2012
, “
Best Practice: Scale-Resolving Simulations in ansys CFD
,”
ANSYS
Germany GmbH
,
Darmstadt, Germany
.
20.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
1st AFOSR International Conference on DNS/LES
, Ruston, LA, Aug. 4–8, pp.
137
147
.
21.
Menter
,
F. R.
, and
Kuntz
,
M.
,
2003
, “
Development and Application of a Zonal DES Turbulence Model for cfx-5
,”
ANSYS CFX
,
Canonsburg, PA
.
22.
Egorov
,
Y.
, and
Menter
,
F. R.
,
2007
, “
Development and Application of SST-SAS Turbulence Model in the Desider Project
,”
Second Symposium on Hybrid RANS-LES Methods
, Corfu, Greece, June 17–18, pp.
261
270
.
23.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), p. 35.
24.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T. J.
,
2008
, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Combust. Flame
,
155
(
1–2
), pp.
196
214
.
25.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.
26.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2015
, “
Effect of Slot Injection and Effusion Array on the Liner Heat Transfer Coefficient of a Scaled Lean Burn Combustor With Representative Swirling Flow
,”
ASME
J. Eng. Gas Turbines Power (in press).
27.
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2015
, “
Adiabatic Effectiveness and Flow Field Measurements in a Realistic Effusion Cooled Lean Burn Combustor
,”
ASME
Paper No. GT2015-42584.
You do not currently have access to this content.