Oxides of nitrogen (NOx) are pollutants emitted by combustion processes during power generation and transportation that are subject to increasingly stringent regulations due to their impact on human health and the environment. One NOx reduction technology being investigated for gas-turbine engines is exhaust-gas recirculation (EGR), either through external exhaust-gas recycling or staged combustion. In this study, the effects of different percentages of EGR on NOx production will be investigated for methane–air and propane–air flames at a selected adiabatic flame temperature of 1800 K. The variability and uncertainty of the results obtained by the gri-mech 3.0 (GRI), San-Diego 2005 (SD), and the CSE thermochemical mechanisms are assessed. It was found that key parameters associated with postflame NO emissions can vary up to 192% for peak CH values, 35% for thermal NO production rate, and 81% for flame speed, depending on the mechanism used for the simulation. A linear uncertainty analysis, including both kinetic and thermodynamic parameters, demonstrates that simulated postflame nitric oxide levels have uncertainties on the order of ±50–60%. The high variability of model predictions, and their relatively high associated uncertainties, motivates future experiments of NOx formation in exhaust-gas-diluted flames under engine-relevant conditions to improve and validate combustion and NOx design tools.

References

1.
IEA
,
2012
,
World Energy Outlook
,
International Energy Agency
,
Paris
.
2.
Skalska
,
K.
,
Miller
,
J. S.
, and
Ledakowicz
,
S.
,
2010
, “
Trends in NOx Abatement: A Review
,”
Sci. Total Environ.
,
408
(
19
), pp.
3976
3989
.
3.
Fenimore
,
C.
,
1971
, “
Formation of Nitric Oxide in Premixed Hydrocarbon Flames
,”
Proc. Combust. Symp.
,
13
(
1
), pp.
373
380
.
4.
Moskaleva
,
L.
, and
Lin
,
M.
,
2000
, “
The Spin-Conserved Reaction CH + N = H + NCN: A Major Pathway to Prompt NO Studied by Quantum/Statistical Theory Calculations and Kinetic Modeling of Rate Constant
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
2393
2401
.
5.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
(
4
), pp.
287
338
.
6.
Guethe
,
F.
,
de la Cruz García
,
M.
, and
Burdet
,
A.
,
2009
, “
Flue Gas Recirculation in Gas Turbine: Investigation of Combustion Reactivity and NOx Emission
,”
ASME
Paper No. GT2009-59221.
7.
Elkady
,
A. M.
,
Herbon
,
J.
,
Kalitan
,
D. M.
,
Leonard
,
G.
,
Akula
,
R.
,
Karim
,
H.
, and
Hadley
,
M.
,
2012
, “
Gas Turbine Emission Characteristics in Perfectly Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
061501
.
8.
Scarinci
,
T.
,
Freeman
,
C.
, and
Day
,
I.
,
2004
, “
Passive Control of Combustion Instability in a Low Emissions Aeroderivative Gas Turbine
,”
ASME
Paper No. GT2004-53767.
9.
Lörstad
,
D.
,
Lindholm
,
A.
,
Pettersson
,
J.
,
Björkman
,
M.
, and
Hultmark
,
I.
,
2013
, “
Siemens SGT-800 Industrial Gas Turbine Enhanced to 50 MW: Combustor Design Modifications, Validation and Operation Experience
,”
ASME
Paper No. GT2013-95478.
10.
Barenblatt
,
G. I.
, and
Sunyaev
,
R. A.
, eds.,
1992
. “
The Oxidation of Nitrogen in Combustion and Explosions
,”
Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical Physics and Hydrodynamics
,
Princeton University Press
,
Princeton, NJ
.
11.
Bozzelli
,
J. W.
, and
Dean
,
A. M.
,
1995
, “
O+ NNH: A Possible New Route for NOx Formation in Flames
,”
Int. J. Chem. Kinet.
,
27
(
11
), pp.
1097
1109
.
12.
Nicol
,
D. G.
,
Steele
,
R. C.
,
Marinov
,
N. M.
, and
Malte
,
P. C.
,
1995
, “
The Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
117
(
1
), pp.
100
111
.
13.
Sutton
,
J. A.
, and
Fleming
,
J. W.
,
2008
, “
Towards Accurate Kinetic Modeling of Prompt NO Formation in Hydrocarbon Flames Via the NCN Pathway
,”
Combust. Flame
,
154
(
3
), pp.
630
636
.
14.
Gokulakrishnan
,
P.
,
Fuller
,
C. C.
,
Klassen
,
M. S.
,
Joklik
,
R. G.
,
Kochar
,
Y. N.
,
Vaden
,
S. N.
,
Lieuwen
,
T. C.
, and
Seitzman
,
J. M.
,
2014
, “
Experiments and Modeling of Propane Combustion With Vitiation
,”
Combust. Flame
,
161
(
8
), pp.
2038
2053
.
15.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
, 4th ed.,
CRC Press
,
Boca Raton, FL
.
16.
Amato
,
A.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2013
, “
Emissions From Oxyfueled or High-Exhaust Gas Recirculation Turbines
,”
Gas Turbine Emissions
,
T. C.
Lieuwen
and
V.
Yang
, eds.,
Cambridge University Press
,
New York
.
17.
Smith
,
G.
,
Golden
,
D.
,
Frenklach
,
M.
,
Moriarty
,
N.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C.
,
Hanson
,
R.
,
Song
,
S.
,
Gardiner
,
W.
,
Lissianski
,
V.
, and
Qin
,
Z.
, “
GRI-Mech 3.0
,” Gas Research Institute, Chicago, http://www.me.berkeley.edu/gri_mech/
18.
Fackler
,
K. B.
,
Karalus
,
M. F.
,
Novosselov
,
I. V.
,
Kramlich
,
J. C.
, and
Malte
,
P. C.
,
2011
, “
Experimental and Numerical Study of NOx Formation From the Lean Premixed Combustion of CH4 Mixed With CO2 and N2
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
121502
.
19.
Frenklach
,
M.
,
Wang
,
H.
, and
Rabinowitz
,
M. J.
,
1992
, “
Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method Combustion of Methane
,”
Prog. Energy Combust. Sci.
,
18
(
1
), pp.
47
73
.
20.
Watson
,
G. M. G.
,
Munzar
,
J. D.
, and
Bergthorson
,
J. M.
,
2013
, “
Diagnostics and Modeling of Stagnation Flames for the Validation of Thermochemical Combustion Models for NOx Predictions
,”
Energy Fuels
,
27
(
11
), pp.
7031
7043
.
21.
Sheen
,
D. A.
, and
Tsang
,
W.
,
2014
, “
A Comparison of Literature Models for the Oxidation of Normal Heptane
,”
Combust. Flame
,
161
(
8
), pp.
1984
1992
.
22.
Watson
,
G. M. G.
,
Munzar
,
J. D.
, and
Bergthorson
,
J. M.
,
2014
, “
NO Formation in Model Syngas and Biogas Blends
,”
Fuel
,
124
(
1
), pp.
113
124
.
23.
Turányi
,
T.
,
Zalotai
,
L.
,
Dóbé
,
S.
, and
Bérces
,
T.
,
2002
, “
Effect of the Uncertainty of Kinetic and Thermodynamic Data on Methane Flame Simulation Results
,”
Phys. Chem. Chem. Phys.
,
4
(
12
), pp.
2568
2578
.
24.
Tomlin
,
A. S.
,
2013
, “
The Role of Sensitivity and Uncertainty Analysis in Combustion Modelling
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
159
176
.
25.
Zsély
,
I. G.
,
Zádor
,
J.
, and
Turányi
,
T.
,
2008
, “
Uncertainty Analysis of NO Production During Methane Combustion
,”
Int. J. Chem. Kinet.
,
40
(
11
), pp.
754
768
.
26.
Hughes
,
K.
,
Tomlin
,
A.
,
Hampartsoumian
,
E.
,
Nimmo
,
W.
,
Zsély
,
I. G.
,
Ujvári
,
M.
,
Turanyi
,
T.
,
Clague
,
A.
, and
Pilling
,
M.
,
2001
, “
An Investigation of Important Gas-Phase Reactions of Nitrogenous Species From the Simulation of Experimental Measurements in Combustion Systems
,”
Combust. Flame
,
124
(
4
), pp.
573
589
.
27.
UC San Diego Combustion Research Group
,
2005
, “
Chemical–Kinetic Mechanisms for Combustion Applications
,”
University of California–San Diego
,
La Jolla, CA
, http://combustion.ucsd.edu
28.
Versailles
,
P.
,
Watson
,
G. M. G.
,
Lipardi
,
A. C. A.
, and
Bergthorson
,
J. M.
,
2015
, “
Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1–C4 alkanes
,” (submitted).
29.
Watson
,
G. M. G.
,
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2015
, “
NO Formation in Premixed Flames of C1 to C3 Alkanes and Alcohols
,” (submitted).
30.
Petrova
,
M. V.
, and
Williams
,
F. A.
,
2006
, “
A Small Detailed Chemical-Kinetic Mechanism for Hydrocarbon Combustion
,”
Combust. Flame
,
144
(
3
), pp.
526
544
.
31.
Goodwin
,
D.
,
2003
, “
An Open-Source, Extensible Software Suite for CVD Process Simulation
,”
Chemical Vapor Deposition XVI and EUROCVD 14: Proceedings of the International Symposium
,
Electrochemical Society
,
Pennington, NJ
, pp.
2003
2008
.
32.
Reaction Design
,
2013
,
Chemkin-Pro Release 15131
,
Reaction Design
,
San Diego, CA
.
33.
Boyce
,
M. P.
,
2012
,
Gas Turbine Engineering Handbook
, 4th ed.,
Elsevier
,
Oxford, UK
.
34.
Zsély
,
I. G.
,
Zádor
,
J.
, and
Turányi
,
T.
,
2005
, “
Uncertainty Analysis of Updated Hydrogen and Carbon Monoxide Oxidation Mechanisms
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1273
1281
.
35.
Zádor
,
J.
,
Zsély
,
I. G.
,
Turányi
,
T.
,
Ratto
,
M.
,
Tarantola
,
S.
, and
Saltelli
,
A.
,
2005
, “
Local and Global Uncertainty Analyses of a Methane Flame Model
,”
J. Phys. Chem. A
,
109
(
43
), pp.
9795
9807
.
36.
Zádor
,
J.
,
Zsély
,
I.
, and
Turányi
,
T.
,
2006
, “
Local and Global Uncertainty Analysis of Complex Chemical Kinetic Systems
,”
Reliab. Eng. Syst. Saf.
,
91
(
10
), pp.
1232
1240
.
37.
Baulch
,
D. L.
,
Bowman
,
C. T.
,
Cobos
,
C. J.
,
Cox
,
R.
,
Just
,
T.
,
Kerr
,
J.
,
Pilling
,
M. J.
,
Stocker
,
D.
,
Troe
,
J.
,
Tsang
,
W.
,
Walker
,
R. W.
, and
Warnatz
,
J.
,
2005
, “
Evaluated Kinetic Data for Combustion Modeling: Supplement II
,”
J. Phys. Chem. Ref. Data
,
34
(
3
), pp.
757
1397
.
38.
Sheen
,
D. A.
,
You
,
X.
,
Wang
,
H.
, and
Løvås
,
T.
,
2009
, “
Spectral Uncertainty Quantification, Propagation and Optimization of a Detailed Kinetic Model for Ethylene Combustion
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
535
542
.
39.
Ruscic
,
B.
,
2013
, “
Active Thermochemical Tables (ATcT) Values Based on ver. 1.112 of the Thermochemical Network
,” Argonne National Laboratory, Argonne, IL, http://atct.anl.gov
40.
Konnov
,
A. A.
,
2008
, “
Remaining Uncertainties in the Kinetic Mechanism of Hydrogen Combustion
,”
Combust. Flame
,
152
(
4
), pp.
507
528
.
41.
Tsang
,
W.
, and
Hampson
,
R.
,
1986
, “
Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds
,”
J. Phys. Chem. Ref. Data
,
15
(
3
), pp.
1087
1279
.
42.
Shimizu
,
K.
,
Hibi
,
A.
,
Koshi
,
M.
,
Morii
,
Y.
, and
Tsuboi
,
N.
,
2011
, “
Updated Kinetic Mechanism for High-Pressure Hydrogen Combustion
,”
J. Propul. Power
,
27
(
2
), pp.
383
395
.
43.
Burcat
,
A.
, and
Ruscic
,
B.
,
2005
, “
Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion With Updates From Active Thermochemical Tables
,”
Argonne National Laboratory
,
Argonne, IL
.
44.
Tabor
,
D. P.
,
Harding
,
M. E.
,
Ichino
,
T.
, and
Stanton
,
J. F.
,
2012
, “
High-Accuracy Extrapolated Ab Initio Thermochemistry of the Vinyl, Allyl, and Vinoxy Radicals
,”
J. Phys. Chem. A
,
116
(
29
), pp.
7668
7676
.
45.
Tsang
,
W.
,
1996
, “
Heats of Formation of Organic Free Radicals by Kinetic Methods
,”
Energetics of Organic Free Radicals
,
J. A.
Martinho Simões
,
J.
Liebman
, and
A.
Greenberg
, eds.,
Chapman and Hall
,
New York
.
46.
Rodgers
,
A. S.
, and
Smith
,
G. P.
,
1996
, “
Pressure and Temperature Dependence of the Reactions of CH With N2
,”
Chem. Phys. Lett.
,
253
(
3
), pp.
313
321
.
47.
Lide
,
W.
, and
Haynes
,
D.
, eds.,
2009
,
CRC Handbook of Chemistry and Physics
, 90th ed.,
CRC Press
,
Boca Raton, FL
.
48.
Gokulakrishnan
,
P.
,
Fuller
,
C.
,
Joklik
,
R.
, and
Klassen
,
M.
,
2012
, “
Chemical Kinetic Modeling of Ignition and Emissions From Natural Gas and LNG Fueled Gas Turbines
,”
ASME
Paper No. GT2012-69902.
49.
Sutton
,
J. A.
,
Williams
,
B. A.
, and
Fleming
,
J. W.
,
2012
, “
Investigation of NCN and Prompt-NO Formation in Low-Pressure C1–C4 Alkane Flames
,”
Combust. Flame
,
159
(
2
), pp.
562
576
.
50.
Galmiche
,
B.
,
Halter
,
F.
,
Foucher
,
F.
, and
Dagaut
,
P.
,
2011
, “
Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames
,”
Energy Fuels
,
25
(
3
), pp.
948
954
.
51.
Schofield
,
K.
,
2012
, “
Large Scale Chemical Kinetic Models of Fossil Fuel Combustion: Adequate as Engineering Models—No More, No Less
,”
Energy Fuels
,
26
(
9
), pp.
5468
5480
.
You do not currently have access to this content.