Processing the knock sensor's signal is the most common approach for knock detection in series production vehicles. Filtration, rectification, and integration in a defined knock window (KW) are main steps to compute the standard knock intensity (SKI). The SKI strongly depends on the engine operating conditions. In this study, a novel model is proposed based on the knock sensor analysis to determine the normalized knock intensity (NKI) with much less dependency on the operating conditions, cylinder numbers (CNs), and KW. Implementing the proposed normalization model, a fixed detection threshold can be used for knock detection at all operating conditions. To verify the model, an accurate knock detection method based on cylinder pressure analysis is utilized, which comprises intensity calculation and a novel technique for detection threshold determination. Experimental results at all operating conditions show a square of correlation coefficient greater than 0.7 when the knock intensity from the presented model is compared with the reference cylinder pressure based method. In addition, the model detects all heavy knocking cycles and there is no wrongly detected knocking combustion.

References

1.
Szwaja
,
S.
, and
Naber
,
J. D.
,
2013
, “
Dual Nature of Hydrogen Combustion Knock
,”
Int. J. Hydrogen Energy
,
38
(
28
), pp.
12489
12496
.
2.
Pipitone
,
E.
, and
Genchi
,
G.
,
2014
, “
Experimental Determination of Liquefied Petroleum Gas–Gasoline Mixtures Knock Resistance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
121502
.
3.
Aliramezani
,
M.
,
Chitsaz
,
I.
, and
Mozafari
,
A. A.
,
2013
, “
Thermodynamic Modeling of Partially Stratified Charge Engine Characteristics for Hydrogen-Methane Blends at Ultra-Lean Conditions
,”
Int. J. Hydrogen Energy
,
38
(
25
), pp.
10640
10647
.
4.
Shao
,
J.
, and
Rutland
,
C. J.
,
2015
, “
Modeling Investigation of Different Methods to Suppress Engine Knock on a Small Spark Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
061506
.
5.
Baloo
,
M.
,
Mollaei Dariani
,
B.
,
Akhlaghi
,
M.
, and
Chitsaz
,
I.
,
2015
, “
Effect of Iso-Octane/Methane Blend on Laminar Burning Velocity and Flame Instability
,”
Fuel
,
144
, pp.
264
273
.
6.
Russ
,
S.
,
1996
, “
A Review of the Effect of Engine Operating Conditions on Borderline Knock
,”
SAE
Technical Paper No. 960497.
7.
Topinka
,
J. A.
,
Gerty
,
M. D.
,
Heywood
,
J. B.
, and
Keck
,
J. C.
,
2004
, “
Knock Behavior of a Lean-Burn, H2 and CO Enhanced, SI Gasoline Engine Concept
,”
SAE
Technical Paper No. 2004-01-0975.
8.
Jones
,
J. C. P.
,
Spelina
,
J. M.
, and
Frey
,
J.
,
2014
, “
Optimizing Knock Thresholds for Improved Knock Control
,”
Int. J. Engine Res.
,
15
(
1
), pp.
123
132
.
9.
Vavra
,
J.
,
Bohac
,
S. V.
,
Manofsky
,
L.
,
Lavoie
,
G.
, and
Assanis
,
D.
,
2012
, “
Knock in Various Combustion Modes in a Gasoline-Fueled Automotive Engine
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082807
.
10.
Momeni Movahed
,
M.
,
Basirat Tabrizi
,
H.
, and
Mirsalim
,
M.
,
2014
, “
Experimental Investigation of the Concomitant Injection of Gasoline and CNG in a Turbocharged Spark Ignition Engine
,”
Energy Convers. Manage.
,
80
, pp.
126
136
.
11.
Corti
,
E.
, and
Forte
,
C.
,
2010
, “
A Statistical Approach to Spark Advance Mapping
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082803
.
12.
Bika
,
A. S.
,
Franklin
,
L.
, and
Kittelson
,
D. B.
,
2011
, “
Engine Knock and Combustion Characteristics of a Spark Ignition Engine Operating With Varying Hydrogen and Carbon Monoxide Proportions
,”
Int. J. Hydrogen Energy
,
36
(
8
), pp.
5143
5152
.
13.
Brecq
,
G.
,
Bellettre
,
J.
, and
Tazerout
,
M.
,
2003
, “
A New Indicator for Knock Detection in Gas SI Engines
,”
Int. J. Therm. Sci.
,
42
(
5
), pp.
523
532
.
14.
Cavina
,
N.
,
Corti
,
E.
,
Minelli
,
G.
,
Moro
,
D.
, and
Solieri
,
L.
,
2006
, “
Knock Indexes Normalization Methodologies
,”
SAE
Technical Paper No. 2006-01-2998.
15.
Syrimis
,
M.
, and
Assanis
,
D. N.
,
2003
, “
Knocking Cylinder Pressure Data Characteristics in a Spark-Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
494
499
.
16.
Baral
,
B.
, and
Raine
,
R.
,
2008
, “
Knock in a Spark Ignition Engine Fuelled With Gasoline-Kerosene Blends
,”
SAE
Technical Paper No. 2008-01-2417.
17.
Checkel
,
M.
, and
Dale
,
J.
,
1986
, “
Testing a Third Derivative Knock Indicator on a Production Engine
,”
SAE
Technical Paper No. 861216.
18.
Shrestha
,
S. O. B.
, and
Rodrigues
,
R.
,
2008
, “
Effects of Diluents on Knock Rating of Gaseous Fuels
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
6
), pp.
587
597
.
19.
Pipitone
,
E.
, and
D'Acquisto
,
L.
,
2003
, “
Development of a Low-Cost Piezo Film-Based Knock Sensor
,”
Proc. Inst. Mech. Eng., Part D
,
217
(
8
), pp.
691
699
.
20.
Brunt
,
M. F. J.
,
Pond
,
C. R.
, and
Biundo
,
J.
,
1998
, “
Gasoline Engine Knock Analysis Using Cylinder Pressure Data
,”
SAE
Technical Paper No. 980896.
21.
Park
,
J. K.
, and
Chae
,
J. O.
,
2002
, “
A Study on the Knocking and Misfire Detection System Using Breakdown Voltage Characteristics
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
650
659
.
22.
Loubar
,
K.
,
Bellettre
,
J.
, and
Tazerout
,
M.
,
2005
, “
Unsteady Heat Transfer Enhancement Around an Engine Cylinder in Order to Detect Knock
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
278
286
.
23.
Naber
,
J. D.
,
Blough
,
J. R.
,
Frankowski
,
D.
,
Goble
,
M.
, and
Szpytman
,
J. E.
,
2006
, “
Analysis of Combustion Knock Metrics in Spark-Ignition Engines
,”
SAE
Technical Paper No. 2006-01-0400.
24.
Ponti
,
F.
,
2008
, “
In-Cylinder Pressure Measurement: Requirements for On-Board Engine Control
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032803
.
25.
Jones
,
J. C. P.
,
Frey
,
J.
,
Muske
,
K. R.
, and
Scholl
,
D. J.
,
2010
, “
A Cumulative-Summation-Based Stochastic Knock Controller
,”
Proc. Inst. Mech. Eng., Part D
,
224
(
7
), pp.
969
983
.
26.
Spelina
,
J. M.
,
Jones
,
J. C. P.
, and
Frey
,
J.
,
2014
, “
Characterization of Knock Intensity Distributions—Part 1: Statistical Independence and Scalar Measures
,”
Proc. Inst. Mech. Eng., Part D
,
228
(
2
), pp.
117
128
.
27.
Szwaja
,
S.
,
Bhandary
,
K. R.
, and
Naber
,
J. D.
,
2007
, “
Comparisons of Hydrogen and Gasoline Combustion Knock in a Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
32
(
18
), pp.
5076
5087
.
28.
Stotsky
,
A. A.
,
2008
, “
Statistical Engine Knock Modelling and Adaptive Control
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
3
), pp.
429
439
.
You do not currently have access to this content.