The aim of this study was to investigate the cyclic creep–fatigue interaction behavior in a steam turbine inlet valve under cyclic thermomechanical loading conditions. Three years and nine iterations of idealized startup–steady-state operation–shutdown process were chosen. The Ramberg–Osgood model, the Norton–Bailey law, and continuum damage mechanics were applied to describe the stress–strain behavior and calculate the damage. The strength of the steam valve revealed that significant stress variation mainly occurred at the joint parts between the valve diffuser and the adjust valve body, due to the combination of the enhanced turbulent flow and assembly force at these areas. The contact stress at the region of component assembly was sensitive to the cyclic loading at the initial iterations. The maximum decrease amplitude in the normalized contact stress between the second and the fourth iterations reached 0.12. The damage analysis disclosed that the notch of the deflector in the adjust valve had the maximum damage due to the stress concentration.

References

1.
Cheong
,
K. S.
, and
Karstensen
,
A. D.
,
2009
, “
Integrity Assessment of an Embrittled Steam Turbine Casing
,”
Int. J. Pressure Vessels Piping
,
86
(
4
), pp.
265
272
.
2.
Rusin
,
A.
,
1992
, “
Numerical Simulation of Turbine Valve Creep
,”
Arch. Appl. Mech.
,
62
(
6
), pp.
386
393
.
3.
Kostenko
,
Y.
,
Lvov
,
G.
,
Gorash
,
E.
,
Altenbach
,
H.
, and
Naumenko
,
K.
,
2006
, “
Power Plant Component Design Using Creep-Damage Analysis
,”
ASME
Paper No. IMECE2006-13710.
4.
Chen
,
Z. B.
,
Li
,
G. Q.
,
Zhang
,
H.
, and
Chen
,
C. Y.
,
2009
, “
Fatigue Life Prediction of Regulating Valves on the Intermediate-Pressure Section of a 400 MW Steam Turbine
,”
Eng. Failure Anal.
,
16
(
5
), pp.
1483
1492
.
5.
Payten
,
W. M.
,
Wei
,
T.
,
Snowden
,
K. U.
,
Bendeich
,
P.
,
Law
,
M.
, and
Charman
,
D.
,
2011
, “
Crack Initiation and Crack Growth Assessment of a High Pressure Steam Chest
,”
Int. J. Pressure Vessels Piping
,
88
(
1
), pp.
34
44
.
6.
Xu
,
S. H.
,
Hu
,
Z. Q.
,
He
,
J.
,
Xiao
,
L.
, and
Jiang
,
P. N.
,
2014
, “
Numerical Investigations of History Temperature and Stress Field of Main Steam Valve
,”
ASME
Paper No. GT2014-26069.
7.
Domnick
,
C. B.
,
Benra
,
F. K.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2015
, “
Numerical Investigation on the Time-Variant Flow Field and Dynamic Forces Acting in Steam Turbine Inlet Valves
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
081601
.
8.
Domnick
,
C. B.
,
Benra
,
F. K.
,
Brillert
,
D.
,
Dohmen
,
H. J.
, and
Musch
,
C.
,
2015
, “
Numerical Investigation on the Vibration of Steam Turbine Inlet Valves and the Feedback to the Dynamic Flow Field
,”
ASME
Paper No. GT2015-42182.
9.
Ayed
,
A. H.
,
Kemper
,
M.
,
Kusterer
,
H.
,
Wirsum
,
M.
,
Nordheim
,
D. V.
,
Tebbenhoff
,
O.
,
Cyzchon
,
K. H.
,
Metzger
,
K.
, and
Bohn
,
D.
,
2015
, “
Numerical and Experimental Investigations of the Transient Thermal Behavior of a Steam By-Pass Valve at Steam Temperature Beyond 700 °C
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011015
.
10.
Mutama
,
K. R.
,
2013
, “
Some Aspects of Steam Turbine Valves: Materials, Operations and Maintenance
,”
ASME
Paper No. POWER2013-98289.
11.
Mirandola
,
A.
,
Soppator
,
A.
, and
Casto
,
E. L.
,
2010
, “
Evaluation of the Effects of the Operation Strategy of a Steam Power Plant on the Residual Life of Its Device
,”
Energy
,
35
(
2
), pp.
1024
1032
.
12.
Soppator
,
A.
,
Mirandola
,
A.
,
Meneghetti
,
G.
, and
Casto
,
E. L.
,
2012
, “
On the Operation Strategy of Steam Power Plants Working at Variable Load: Technical and Economic Issues
,”
Energy
,
37
(1), pp.
228
236
.
13.
Spelling
,
J.
,
Jocker
,
M.
, and
Martin
,
A.
,
2012
, “
Thermal Modeling of a Solar Steam Turbine With a Focus on Start-Up Time Reduction
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
013001
.
14.
Marinescu
,
G.
,
Mohr
,
W. F.
,
Ehrsam
,
A.
,
Ruffino
,
P.
, and
Sell
,
M.
,
2014
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components—Temperature Measurements With Optical Probes and Natural Cooling Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(2), p.
021602
.
15.
Babus'Haq
,
R. F.
,
1992
, “
Forced-Convection Heat Transfer From a Pipe to Air Flowing Turbulently Inside it
,”
Exp. Heat Transfer
,
5
(
3
), pp.
161
173
.
16.
Dhir
,
V.
, and
Lienhard
,
J.
,
1971
, “
Laminar Film Condensation on Plane and Axisymmetric Bodies in Nonuniform Gravity
,”
ASME J. Heat Transfer
,
93
(
1
), pp.
97
100
.
17.
Incropera
,
F.
, and
Dewitt
,
D.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
18.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress-Strain Curves by Three Parameters
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Note No.
NACA-TN-902
.https://ntrs.nasa.gov/search.jsp?R=19930081614
19.
Mitchell
,
M. R.
,
1996
, “
Fundamentals of Modern Fatigue Analysis for Design
,”
ASM Handbook
,
R.
Lampam Steven
, ed.,
ASM International
,
Material Park, OH
, pp.
229
249
.
20.
Saab
,
H. A.
, and
Nethercot
,
D. A.
,
1991
, “
Modeling Steel Frame Behavior Under Fire Conditions
,”
Eng. Struct.
,
13
(
4
), pp.
371
382
.
21.
Mazzolani
,
F. M.
, and
Piluso
,
V.
,
1997
, “
Prediction of the Rotation Capacity of Aluminum Alloy Beams
,”
Thin-Walled Struct.
,
27
(
1
), pp.
103
116
.
22.
Mrozinski
,
S.
, and
Golanski
,
G.
,
2011
, “
Low Cycle Fatigue of GX12CrMoVNbN9-1 Cast Steel at Elevated Temperature
,”
J. Achiev. Mater. Manuf. Eng.
,
49
(
1
), pp.
7
16
.http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-fada7e75-313c-411a-97dd-5e49008e7128
23.
Colombo
,
F.
,
Masserey
,
B.
,
Mazza
,
E.
, and
Holdsworth
,
S. R.
,
2002
, “
Simple Modelling of the Constitutive Behavior of a 1%CrMoV Rotor Steel in Service-Like Thermo-Mechanical Fatigue Tests
,”
Mater. High Temp.
,
19
(
4
), pp.
225
233
.
24.
Hosseini
,
E.
,
Holdsworth
,
S. R.
, and
Mazza
,
E.
,
2012
, “
Creep Constitutive Model Considerations for High-Temperature Finite Element Numerical Simulations
,”
J. Strain Anal. Eng. Des.
,
47
(
6
), pp.
341
349
.
25.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1990
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
26.
Cock
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power Law Creep Under Multiaxial Stress
,”
Metal Sci.
,
14
(8–9), pp.
395
402
.
27.
Guo
,
J. Q.
,
Xuan
,
F. Z.
, and
He
,
L.
,
2008
, “
Stress Relaxation Performance and Prediction Models for Bolt Material of 1Cr10NiMoW2VNbN
,”
Nucl. Power Eng.
,
29
(
6
), pp.
119
124
.https://inis.iaea.org/search/search.aspx?orig_q=RN:43075289
28.
Wang
,
W. Z.
,
2014
, “
Numerical Analysis of Fatigue Life Improvement by Optimizing the Startup Phase for a 1000 MW Supercritical Steam Turbine Inner Casing
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042601
.
29.
Wang
,
W. Z.
,
2014
, “
Analysis of Multi-Axial Creep–Fatigue Damage on an Outer Cylinder of a 1000 MW Supercritical Steam Turbine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
112504
.
You do not currently have access to this content.