Recent experiments have shown that the lateral motion of a high pressure injector needle can lead to significant asymmetrical flow in the sac and asymmetric spray pattern in the combustor, which in turn degrades the combustion efficiency and results in spray hole damage. However, the underlying cause of the lateral needle motion is not understood. In this paper, we numerically studied the complex transient flow in a high pressure diesel injector using the detached eddy simulation to understand the cause of the lateral needle motion. The flow field was described by solving the compressible Navier–Stokes equations. The mass transfer between the liquid and vapor phases of the fuel was modeled using the Zwart–Gerber–Belamri equations. Our study revealed that the vortical flow structures in the sac are responsible for the lateral needle motion and the hole-to-hole flow variation. The transient motion of the vortical structure also affected vapor formation variations in spray holes. Further analysis showed that the rotational speed of the vortical flow structure is proportional to the lateral force magnitude on the lower needle surfaces.

References

1.
Perini
,
F.
,
Miles
,
P. C.
, and
Reitz
,
R. D.
,
2014
, “
A Comprehensive Modeling Study of in-Cylinder Fluid Flows in a High-Swirl, Light-Duty Optical Diesel Engine
,”
Comput. Fluids
,
105
, pp.
113
124
.
2.
Lindstrom
,
M.
,
2009
, “
Injector Nozzle Hole Parameters and Their Influence on Real DI Diesel Performance
,”
Licentiate thesis
, Royal Institute of Technology, Stockholm, Sweden.http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A159595&dswid=-2891#sthash.0tbHUY1M.dpbs
3.
Benajes
,
J.
,
Pastor
,
J. V.
,
Payri
,
R.
, and
Plazas
,
A. H.
,
2004
, “
Analysis of the Influence of Diesel Nozzle Geometry in the Injection Rate Characteristic
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
63
71
.
4.
Flynn
,
P.
,
Durret
,
R.
,
Hunter
,
G.
,
Loye
,
A.
,
Akinyemi
,
O.
,
Dec
,
J.
, and
Westbrook
,
C.
,
1999
, “
Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, and Empirical Validation
,”
SAE
Paper No. 1999-01-0509.
5.
Park
,
S. H.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2009
, “
Effect of Bioethanol−Biodiesel Blending Ratio on Fuel Spray Behavior and Atomization Characteristics
,”
Energy Fuels
,
23
(
8
), pp.
4092
4098
.
6.
Payri
,
R.
,
Garcia
,
J.
,
Salvador
,
F.
, and
Gimeno
,
J.
,
2005
, “
Using Spray Momentum Flux Measurements to Understand the Influence of Diesel Nozzle Geometry on Spray Characteristics
,”
Fuel
,
84
(
5
), pp.
551
561
.
7.
Suh
,
H. K.
, and
Lee
,
C. S.
,
2008
, “
Effect of Cavitation in Nozzle Orifice on the Diesel Fuel Atomization Characteristics
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1001
1009
.
8.
Chaves
,
H.
,
Knapp
,
M.
,
Kubitzek
,
A.
,
Obermeier
,
F.
, and
Schneider
,
T.
,
1995
, “
Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles
,”
SAE
Paper No. 950290.
9.
Baritaud
,
T.
,
Heinze
,
T.
, and
Le Coz
,
J.
,
1994
, “
Spray and Self-Ignition Visualization in a DI Diesel Engine
,”
SAE
Paper No. 940681.
10.
Bruneaux
,
G.
,
Verhoeven
,
D.
, and
Baritaud
,
T.
,
1999
, “
High Pressure Diesel Spray and Combustion Visualization in a Transparent Model Diesel Engine
,”
SAE
Paper No. 1999-01-3648.
11.
Dec
,
J.
,
1997
, “
A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging
,”
SAE
Paper No. 970873.
12.
Hiroyasu
,
H.
,
2000
, “
Spray Breakup Mechanism From The Hole-Type Nozzle and Its Applications
,”
Atomization Sprays
,
10
(
3–5
), pp.
511
527
.
13.
Payri
,
F.
,
Payri
,
R.
,
Salvador
,
F. J.
, and
Martínez-López
,
J.
,
2012
, “
A Contribution to the Understanding of Cavitation Effects in Diesel Injector Nozzles Through a Combined Experimental and Computational Investigation
,”
Comput. Fluids
,
58
, pp.
88
101
.
14.
Schmidt
,
D. P.
, and
Corradini
,
M. L.
,
2001
, “
The Internal Flow of Diesel Fuel Injector Nozzles: A Review
,”
Int. J. Engine Res.
,
2
(
1
), pp.
1
22
.
15.
Badock
,
C. W. R.
, and
Tropea
,
C.
,
1999
, “
The Influence of Hydro-Grinding on Cavitation Inside a Diesel Injection Nozzle and Primary Break-Up Under Unsteady Pressure Conditions
,” 15th Annual Conference on Liquid Atomization and Spray Systems, Toulouse, France, July 15–17, pp. 5–7.
16.
Payri
,
R.
,
Margot
,
X.
, and
Salvador
,
F.
,
2002
, “
A Numerical Study of the Influence of Diesel Nozzle Geometry on the Inner Cavitating Flow
,”
SAE
Paper No. 2002-01-0215.
17.
Macian
,
V.
,
Payri
,
R.
,
Margot
,
X.
, and
Salvador
,
F. J.
,
2003
, “
A CFD Analysis of the Influence of Diesel Nozzle Geometry on the Inception of Cavitation
,”
Atomization Sprays
,
13
(
5–6
), pp.
579
604
.
18.
Gavaises
,
M. A. A. A.
,
2006
, “
Cavitation Inside Multi-Hole Injectors for Large Diesel Engines and Its Effect on the Near-Nozzle Spray Structure
,”
SAE
Paper No. 2006-01-1114.
19.
Som
,
S.
,
El-Hannouny
,
E. M.
,
Longman
,
D. E.
, and
Aggarwal
,
S. K.
,
2010
, “
Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector
,”
ASME J. Gas Turbines Power
,
132
(
4
), p.
042802
.
20.
Pan
,
Y.
, and
Suga
,
K.
,
2006
, “
A Numerical Study on the Breakup Process of Laminar Liquid Jets Into a Gas
,”
Phys. Fluids
,
18
(
5
), p.
052101
.
21.
Powell
,
C. F.
,
Kastengren
,
A. L.
,
Liu
,
Z.
, and
Fezzaa
,
K.
,
2010
, “
The Effects of Diesel Injector Needle Motion on Spray Structure
,”
ASME J. Gas Turbines Power
,
133
(
1
), p.
012802
.
22.
Kilic
,
A.
,
Schulze
,
L.
, and
Tschöke
,
H.
,
2006
, “
Influence of Nozzle Parameters on Single Jet Flow Quantities of Multi-Hole Diesel Injection Nozzles
,”
SAE
Paper No. 2006-01-1983.
23.
Van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the Simple Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.
24.
Shih
,
T. L. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-Epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
J. Comput. Fluids
,
24
(
3
), pp.
227
238
.
25.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1973
, “
The Calculation of Low-Reynolds-Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
(
6
), pp.
1119
1130
.
26.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
27.
Constantinescu
,
G.
,
Chapelet
,
M.
, and
Squires
,
K.
,
2003
, “
Turbulence Modeling Applied to Flow Over a Sphere
,”
AIAA J.
,
41
(
9
), pp.
1733
1742
.
28.
Payri
,
R.
,
Tormos
,
B.
,
Gimeno
,
J.
, and
Bracho
,
G.
,
2010
, “
The Potential of Large Eddy Simulation (LES) Code for the Modeling of Flow in Diesel Injectors
,”
Math. Comput. Modell.
,
52
(
7–8
), pp.
1151
1160
.
29.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
30.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.
31.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
32.
Zwart
,
P. J.
, G. A. G., and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
International Conference on Multiphase Flow
, Yokohama, Japan, May 30–June 4.
33.
Ansys Inc.
,
2014
, “ansys fluent Theory Guide,” Ansys Inc., Canonsburg, PA.
34.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.
You do not currently have access to this content.