A novel methodology for linear stability analysis of high-frequency thermoacoustic oscillations in gas turbine combustors is presented. The methodology is based on the linearized Euler equations (LEEs), which yield a high-fidelity description of acoustic wave propagation and damping in complex, nonuniform, reactive mean flow environments, such as encountered in gas turbine combustion chambers. Specifically, this work introduces three novelties to the community: (1) linear stability analysis on the basis of linearized Euler equations. (2) Explicit consideration of three-dimensional, acoustic oscillations at screech level frequencies, particularly the first-transversal mode. (3) Handling of noncompact flame coupling with LEE, that is, the spatially varying coupling dynamics between perturbation and unsteady flame response due to small acoustic wavelengths. Two different configurations of an experimental model combustor in terms of thermal power and mass flow rates are subject of the analysis. Linear flame driving is modeled by prescribing the unsteady heat release source term of the linearized Euler equations by local flame transfer functions, which are retrieved from first principles. The required steady-state flow field is numerically obtained via computational fluid dynamics (CFD), which is based on an extended flamelet-generated manifold (FGM) combustion model, taking into account heat transfer to the environment. The model is therefore highly suitable for such types of combustors. The configurations are simulated, and thermoacoustically characterized in terms of eigenfrequencies and growth rates associated with the first-transversal mode. The findings are validated against experimentally observed thermoacoustic stability characteristics. On the basis of the results, new insights into the acoustic field are discussed.

References

1.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.
2.
Culick
,
F. E. C.
,
2006
, “
Unsteady Motions in Combustion Chambers for Propulsion Systems
,” NATO RTO AGARDograph, Report No. RTO AG-AVT-039.
3.
Ghani
,
A.
,
Poinsot
,
T.
,
Gicquel
,
L.
, and
Müller
,
J.-D.
,
2015
, “
LES Study of Transverse Acoustic Instabilities in a Swirled Kerosene/Air Combustion Chamber
,”
Flow, Turbul. Combust.
,
96
(
1
), pp.
207
226
.
4.
Gikadi
,
J.
,
2014
, “
Prediction of Acoustic Modes in Combustors Using Linearized Navier–Stokes Equations in Frequency Space
,”
Ph.D. thesis
, Technical University of Munich, Munich, Germany.
5.
Gikadi
,
J.
,
Föller
,
S.
, and
Sattelmayer
,
T.
,
2014
, “
Impact of Turbulence on the Prediction of Linear Aeroacoustic Interactions: Acoustic Response of a Turbulent Shear Layer
,”
J. Sound Vib.
,
333
(
24
), pp.
6548
6559
.
6.
Gikadi
,
J.
,
Schulze
,
M.
,
Schwing
,
J.
,
Föller
,
S.
, and
Sattelmayer
,
T.
,
2012
, “
Linearized Navier–Stokes and Euler Equations for the Determination of the Acoustic Scattering Behaviour of an Area Expansion
,”
AIAA
Paper No. 2012-2292.
7.
Kierkegaard
,
A.
,
Boij
,
S.
, and
Efraimsson
,
G.
,
2010
, “
A Frequency Domain Linearized Navier–Stokes Equations Approach to Acoustic Propagation in Flow Ducts With Sharp Edges
,”
J. Acoust. Soc. Am.
,
127
(
2
), pp.
710
719
.
8.
Holmberg
,
A.
,
Kierkegaard
,
A.
, and
Weng
,
C.
,
2015
, “
A Frequency Domain Linearized Navier–Stokes Method Including Acoustic Damping by Eddy Viscosity Using RANS
,”
J. Sound Vib.
,
346
, pp.
229
247
.
9.
Gikadi
,
J.
,
Ullrich
,
W. C.
,
Sattelmayer
,
T.
, and
Turrini
,
F.
,
2013
, “
Prediction of the Acoustic Losses of a Swirl Atomizer Nozzle Under Non-Reactive Conditions
,”
ASME
Paper No. GT2013-95449.
10.
Zahn
,
M.
,
Schulze
,
M.
,
Hirsch
,
C.
,
Betz
,
M.
, and
Sattelmayer
,
T.
,
2015
, “
Frequency Domain Predictions of Acoustic Wave Propagation and Losses in a Swirl Burner With Linearized Navier–Stokes Equations
,”
ASME
Paper No. GT2015-42723.
11.
Ullrich
,
W. C.
, and
Sattelmayer
,
T.
,
2015
, “
Transfer Functions of Acoustic, Entropy and Vorticity Waves in an Annular Model Combustor and Nozzle for the Prediction of the Ratio Between Indirect and Direct Combustion Noise
,”
AIAA
Paper No. 2015-2972.
12.
Na
,
W.
,
Efraimsson
,
G.
, and
Boij
,
S.
,
2015
, “
Predictions of Thermoacoustic Instabilities in Combustors Using Linearized Navier–Stokes Equations in Frequency Domain
,”
22nd International Congress of Sound and Vibration
, Florence Italy, July 12–16.
13.
Schwing
,
J.
,
Noiray
,
N.
, and
Sattelmayer
,
T.
,
2011
, “
Interaction of Vortex Shedding and Transverse High-Frequency Pressure Oscillations in a Tubular Combustion Chamber
,”
ASME
Paper No. GT2011-45246.
14.
Schwing
,
J.
,
Grimm
,
F.
, and
Sattelmayer
,
T.
,
2012
, “
A Model for the Thermo-Acoustic Feedback of Transverse Acoustic Modes and Periodic Oscillations in Flame Position in Cylindrical Flame Tubes
,”
ASME
Paper No. GT2012-68775.
15.
Schwing
,
J.
, and
Sattelmayer
,
T.
,
2013
, “
High-Frequency Instabilities in Cylindrical Flame Tubes: Feedback Mechanism and Damping
,”
ASME
Paper No. GT2013-94064.
16.
Berger
,
F.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors, Part I: Measurement of Non-Compact Flame Transfer Function
,”
ASME
Paper No. GT2016-57583.
17.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors, Part II: Modeling and Analysis
,”
ASME
Paper No. GT2016-57500.
18.
Hummel
,
T.
,
Hammer
,
K.
,
Romero
,
P.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Low-Order Modeling of Nonlinear High-Frequency Transversal Thermoacoustic Oscillations in Gas Turbine Combustors
,”
ASME
Paper No. GT2016-57913.
19.
Rao
,
P.
, and
Morris
,
P.
,
2006
, “
Use of Finite Element Methods in Frequency Domain Aeroacoustics
,”
AIAA J.
,
44
(
7
), pp.
1643
1652
.
20.
Richter
,
C.
,
Thiele
,
F.
,
Li
,
X.
, and
Zhuang
,
M.
,
2007
, “
Comparison of Time-Domain Impedance Boundary Conditions for Lined Duct Flows
,”
AIAA J.
,
45
(
6
), pp.
1333
1345
.
21.
Klarmann
,
N.
,
Sattelmayer
,
T.
,
Weiqung
,
G.
, and
Magni
,
F.
,
2016
, “
Impact of Flame Stretch and Heat Loss on Heat Release Distributions in Gas Turbine Combustors: Model Comparison and Validation
,”
ASME
Paper No. GT2016-57625.
22.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.
23.
Klarmann
,
N.
,
Sattelmayer
,
T.
,
Weiqung
,
G.
, and
Magni
,
F.
,
2016
, “
Flamelet Generated Manifolds for Partially-Premixed, Highly-Stretched and Non-Adiabatic Combustion in Gas Turbines
,”
AIAA
Paper No. 2016-2120.
24.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley
,
New York
.
25.
Beau
,
G. L.
,
Ray
,
S.
,
Aliabadi
,
S.
, and
Tezduyar
,
T.
,
1993
, “
SUPG Finite Element Computation of Compressible Flows With the Entropy and Conservation Variables Formulations
,”
Comput. Methods Appl. Mech. Eng.
,
104
(
3
), pp.
397
422
.
26.
Lehoucq
,
R. B.
,
Sorensen
,
D. C.
, and
Yang
,
C.
,
1997
, “
Arpack Users Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods
,” Society for Industrial and Applied Mathematics, Philadelphia, PA.
27.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.
28.
Bauerheim
,
M.
,
Salas
,
P.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
Symmetry Breaking of Azimuthal Thermo-Acoustic Modes in Annular Cavities: A Theoretical Study
,”
J. Fluid Mech.
,
760
(
12
), pp.
431
465
.
29.
Crocco
,
L.
,
Grey
,
J.
, and
Harrje
,
D.
,
1960
,
Theory of Liquid Propellant Rocket Combustion Instability and Its Experimental Verification
,
Princton University Press
,
Princton, NJ
.
30.
Rienstra
,
S. W.
, and
Hirschberg
,
A.
,
2016
, “
An Introduction to Acoustics
,” Revised Edition of IWDE 92-06, Eindhoven University of Technology, Eindhoven, Netherlands.
You do not currently have access to this content.