A novel methodology for linear stability analysis of high-frequency thermoacoustic oscillations in gas turbine combustors is presented. The methodology is based on the linearized Euler equations (LEEs), which yield a high-fidelity description of acoustic wave propagation and damping in complex, nonuniform, reactive mean flow environments, such as encountered in gas turbine combustion chambers. Specifically, this work introduces three novelties to the community: (1) linear stability analysis on the basis of linearized Euler equations. (2) Explicit consideration of three-dimensional, acoustic oscillations at screech level frequencies, particularly the first-transversal mode. (3) Handling of noncompact flame coupling with LEE, that is, the spatially varying coupling dynamics between perturbation and unsteady flame response due to small acoustic wavelengths. Two different configurations of an experimental model combustor in terms of thermal power and mass flow rates are subject of the analysis. Linear flame driving is modeled by prescribing the unsteady heat release source term of the linearized Euler equations by local flame transfer functions, which are retrieved from first principles. The required steady-state flow field is numerically obtained via computational fluid dynamics (CFD), which is based on an extended flamelet-generated manifold (FGM) combustion model, taking into account heat transfer to the environment. The model is therefore highly suitable for such types of combustors. The configurations are simulated, and thermoacoustically characterized in terms of eigenfrequencies and growth rates associated with the first-transversal mode. The findings are validated against experimentally observed thermoacoustic stability characteristics. On the basis of the results, new insights into the acoustic field are discussed.
Skip Nav Destination
Article navigation
March 2017
Research-Article
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
Moritz Schulze,
Moritz Schulze
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching D-85748, Germany
e-mail: schulze@td.mw.tum.de
Technische Universität München,
Garching D-85748, Germany
e-mail: schulze@td.mw.tum.de
Search for other works by this author on:
Tobias Hummel,
Tobias Hummel
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching D-85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching D-85748, Germany
Technische Universität München,
Garching D-85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching D-85748, Germany
Search for other works by this author on:
Noah Klarmann,
Noah Klarmann
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching D-85748, Germany
Technische Universität München,
Garching D-85748, Germany
Search for other works by this author on:
Frederik Berger,
Frederik Berger
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching D-85748, Germany
Technische Universität München,
Garching D-85748, Germany
Search for other works by this author on:
Bruno Schuermans,
Bruno Schuermans
Institute for Advanced Study,
Technische Universität München,
Garching D-85748, Germany;
GE Power,
Baden 5400, Switzerland
Technische Universität München,
Garching D-85748, Germany;
GE Power,
Baden 5400, Switzerland
Search for other works by this author on:
Thomas Sattelmayer
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching D-85748, Germany
Technische Universität München,
Garching D-85748, Germany
Search for other works by this author on:
Moritz Schulze
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching D-85748, Germany
e-mail: schulze@td.mw.tum.de
Technische Universität München,
Garching D-85748, Germany
e-mail: schulze@td.mw.tum.de
Tobias Hummel
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching D-85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching D-85748, Germany
Technische Universität München,
Garching D-85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching D-85748, Germany
Noah Klarmann
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching D-85748, Germany
Technische Universität München,
Garching D-85748, Germany
Frederik Berger
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching D-85748, Germany
Technische Universität München,
Garching D-85748, Germany
Bruno Schuermans
Institute for Advanced Study,
Technische Universität München,
Garching D-85748, Germany;
GE Power,
Baden 5400, Switzerland
Technische Universität München,
Garching D-85748, Germany;
GE Power,
Baden 5400, Switzerland
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching D-85748, Germany
Technische Universität München,
Garching D-85748, Germany
1Corresponding author.
Manuscript received July 9, 2016; final manuscript received July 12, 2016; published online October 4, 2016. Editor: David Wisler.
J. Eng. Gas Turbines Power. Mar 2017, 139(3): 031510 (10 pages)
Published Online: October 4, 2016
Article history
Received:
July 9, 2016
Revised:
July 12, 2016
Citation
Schulze, M., Hummel, T., Klarmann, N., Berger, F., Schuermans, B., and Sattelmayer, T. (October 4, 2016). "Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors." ASME. J. Eng. Gas Turbines Power. March 2017; 139(3): 031510. https://doi.org/10.1115/1.4034453
Download citation file:
Get Email Alerts
Temperature Dependence of Aerated Turbine Lubricating Oil Degradation from a Lab-Scale Test Rig
J. Eng. Gas Turbines Power
Multi-Disciplinary Surrogate-Based Optimization of a Compressor Rotor Blade Considering Ice Impact
J. Eng. Gas Turbines Power
Experimental Investigations on Carbon Segmented Seals With Smooth and Pocketed Pads
J. Eng. Gas Turbines Power
Related Articles
Combustion Instabilities in Industrial Gas Turbines—Measurements on Operating Plant and Thermoacoustic Modeling
J. Eng. Gas Turbines Power (July,2000)
Effect of Fuel System Impedance Mismatch on Combustion Dynamics
J. Eng. Gas Turbines Power (January,2008)
On the Use of Thermoacoustic Analysis for Robust Burner Design
J. Eng. Gas Turbines Power (May,2008)
An Acoustic-Energy Method for Estimating the Onset of Acoustic Instabilities in Premixed Gas-Turbine Combustors
J. Eng. Gas Turbines Power (September,2008)
Related Proceedings Papers
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies