Nowadays, models predicting soot emissions are neither able to describe correctly fine effects of technological changes on sooting trends nor sufficiently validated at relevant operating conditions to match design office quantification needs. Yet, phenomenological descriptions of soot formation, containing key ingredients for soot modeling exist in the literature, such as the well-known Leung et al. model (Combust Flame 1991). However, when blindly applied to aeronautical combustors for different operating conditions, this model fails to hierarchize operating points compared to experimental measurements. The objective of this work is to propose an extension of the Leung model over a wide range of condition relevant of gas turbines operation. Today, the identification process can hardly be based on laboratory flames since few detailed experimental data are available for heavy-fuels at high pressure. Thus, it is decided to directly target smoke number values measured at the engine exhaust for a variety of combustors and operating conditions from idling to take-off. A large eddy simulation approach is retained for its intrinsic ability to reproduce finely unsteady behavior, mixing, and intermittency. In this framework, The Leung model for soot is coupled to the thickened flame model (TFLES) for combustion. It is shown that pressure-sensitive laws for the modeling constant of the soot surface chemistry are sufficient to reproduce engine emissions. Grid convergence is carried out to verify the robustness of the proposed approach. Several cases are then computed blindly to assess the prediction capabilities of the extended model.

References

1.
Kennedy
,
I. M.
,
1997
, “
Models of Soot Formation and Oxidation
,”
Prog. Energy Comb. Sci.
,
23
(
2
), pp.
95
132
.
2.
Olson
,
D.
,
Pickens
,
J.
, and
Gill
,
R.
,
1985
, “
The Effects of Molecular Structure on Soot Formation—II: Diffusion Flames
,”
Combust. Flame
,
62
(
1
), pp.
43
60
.
3.
Moss
,
J.
,
Stewart
,
C.
, and
Young
,
K.
,
1995
, “
Modeling Soot Formation and Burnout in a High Temperature Laminar Diffusion Flame Burning Under Oxygen-Enriched Conditions
,”
Combust. Flame
,
101
(
4
), pp.
491
500
.
4.
Said
,
R.
,
Garo
,
A.
, and
Borghi
,
R.
,
1997
, “
Soot Formation Modeling for Turbulent Flames
,”
Combust. Flame
,
108
(
1–2
), pp.
71
86
.
5.
Donde
,
P.
,
Raman
,
V.
,
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2013
, “
LES/PDF Based Modeling of Soot-Turbulence Interactions in Turbulent Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1183
1192
.
6.
Mueller
,
M. E.
,
Chan
,
Q. N.
,
Qamar
,
N. H.
,
Dally
,
B. B.
,
Pitsch
,
H.
,
Alwahabi
,
Z. T.
, and
Nathan
,
G. J.
,
2013
, “
Experimental and Computational Study of Soot Evolution in a Turbulent Nonpremixed Bluff Body Ethylene Flame
,”
Combust. Flame
,
160
(
7
), pp.
1298
1309
.
7.
Leung
,
K.
,
Lindstedt
,
R.
, and
Jones
,
W.
,
1991
, “
A Simplified Reaction Mechanism for Soot Formation in Nonpremixed Flames
,”
Combust. Flame
,
87
(
3–4
), pp.
289
305
.
8.
Lecocq
,
G.
,
Poitou
,
D.
,
Hernández
,
I.
,
Duchaine
,
F.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2014
, “
A Methodology for Soot Prediction Including Thermal Radiation in Complex Industrial Burners
,”
Flow, Turbul. Combust.
,
92
(
4
), pp.
947
970
.
9.
Luche
,
J.
,
Reuillon
,
M.
,
Boettner
,
J.-C.
, and
Cathonnet
,
M.
,
2004
, “
Reduction of Large Detailed Kinetic Mechanisms: Application to Kerosene/Air Combustion
,”
Combust. Sci. Technol.
,
176
(
11
), pp.
1935
1963
.
10.
Hurley
,
C.
, 1993, “
Smoke Measurements Inside a Gas Turbine Combustor
,”
AIAA
Paper No. 93-2070.
11.
Champagne
,
D.
,
1971
, “
Standard Measurement of Aircraft Gas Turbine Engine Exhaust Smoke
,”
ASME
Paper No. 71-GT-88.
12.
ICAO
,
2010
, “
Emissions Environmental Technical Manual, Guidelines on the Use of Procedures in Emissions Certification of Aircraft Engines, Agreed at CAEP 8
,”
International Civil Aviation Organization Emissions ETM
, Montréal, QC, Canada.
13.
Lahbib
,
D.
,
2015
, “
Modélisation Aérodynamique Et Thermique Des Multiperforations En Les
,” Ph.D. thesis, Université de Montpellier, Montpellier, France.
14.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations—1: The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
15.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene-Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.
16.
Cuenot
,
B.
,
Vicquelin
,
R.
,
Riber
,
E.
,
Moureau
,
V.
,
Lartigue
,
G.
,
Figuer
,
A.
,
Mery
,
Y.
,
Lamouroux
,
J.
,
Richard
,
S.
,
Gicquel
,
L.
,
Schmitt
,
T.
, and
Candel
,
S.
,
2016
, “
Advanced Simulation of Aeronautical Combustors
,”
AerospaceLab
,
11
, p. AL1105.http://www.aerospacelab-journal.org/al11/advanced-simulation-of-aeronautical-combustors
17.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(7), pp. 1843–1863.
18.
Charlette
,
F.
,
Veynante
,
D.
, and
Meneveau
,
C.
,
2002
, “
A Power-Law Wrinkling Model for LES of Premixed Turbulent Combustion—Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.
19.
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2013
, “
Large Eddy Simulation of Soot Evolution in an Aircraft Combustor
,”
Phys. Fluids
,
25
, p. 110812.
You do not currently have access to this content.