A volute is one of the key components in a centrifugal compressor. The aerodynamic stability of the compressor deteriorates remarkably when a volute is employed. This paper investigates the influence of volute-induced circumferential flow distortion on aerodynamic stability of a centrifugal compressor via experimentally validated three-dimensional (3D) numerical simulation method. First, the compressor performance is analyzed based on a newly developed stability parameter. The impeller is confirmed to be the main contributor to the instability of the investigated compressor. Next, the influence of volute on impeller performance is studied by circumferentially distorted boundary conditions at the impeller exit which are extracted from flow field at the volute inlet. Results show that the performance of an impeller passage is determined by not only the back pressure but also the local gradient of pressure distribution in the circumferential direction. Moreover, these passages confronted with pressure reduction in the rotational direction are most unstable, while those confronted with pressure rise have better performance. Consequently, the circumferentially distorted distribution at impeller exit results in a loop of passage performance encapsulating the performance of uniform case. The size of the loop is enhanced by the distortion amplitude. Moreover, the influence of volute-induced distortion on the impeller performance is concluded into two main reasons: the imbalance of the force on flow and the imbalance of tip clearance flow taken by passages. The force imbalance influences the accumulation of secondary flow, while the imbalance of the tip clearance flow results in discrepancies of the low momentum flow in passages.

References

1.
Day
,
I. J.
,
2015
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
2.
Gupta
,
M. K.
,
Soulas
,
T. A.
, and
Childs
,
D. W.
,
2007
, “
New Steps to Improve Rotordynamic Stability Predictions of Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), pp.
277
285
.
3.
Halawa
,
T.
,
Gadala
,
M. S.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2015
, “
Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072604
.
4.
Chen
,
Y.
,
Seidel
,
U.
,
Chen
,
J.
,
Haupt
,
U.
, and
Rautenberg
,
M.
,
1994
, “
Experimental Investigation of the Flow Field of Deep Rotating Stall in a Centrifugal Compressor
,”
ASME
Paper No. 94-GT-160.
5.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific & Technical
, London.
6.
Chen
,
H.
,
Guo
,
S.
,
Zhu
,
X-C.
,
Du
,
Z-H.
, and
Zhao
,
S.
,
2008
, “
Numerical Simulations of Onset of Volute Stall Inside a Centrifugal Compressor
,”
ASME
Paper No. GT2008-50036.
7.
Gu
,
F.
,
Engeda
,
A.
,
Cave
,
M.
, and
Di Liberti
,
J.-L.
,
2001
, “
A Numerical Investigation on the Volute/Diffuser Interaction Due to the Axial Distortion at the Impeller Exit
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
475
483
.
8.
Hillewaert
,
K.
, and
Van den Braembussche
,
R. A.
,
1998
, “
Numerical Simulation of Impeller–Volute Interaction in Centrifugal Compressors
,”
ASME
Paper No. 98-GT-244.
9.
Abdelmadjid
,
C.
,
Mohamed
,
S.-A.
, and
Boussad
,
B.
,
2013
, “
CFD Analysis of the Volute Geometry Effect on the Turbulent Air Flow Through the Turbocharger Compressor
,”
Energy Procedia
,
36
, pp.
746
755
.
10.
Hassan
,
A. S.
,
2007
, “
Influence of the Volute Design Parameters on the Performance of a Centrifugal Compressor of an Aircraft Turbocharger
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
5
), pp.
695
704
.
11.
Xu
,
C.
, and
Müller
,
M.
,
2005
, “
Development and Design of a Centrifugal Compressor Volute
,”
Int. J. Rotating Mach.
,
2005
(
3
), pp.
190
196
.
12.
Iversen
,
H. W.
,
Rolling
,
R. E.
, and
Carlson
,
J. J.
,
1960
, “
Volute Pressure Distribution, Radial Force on the Impeller, and Volute Mixing Losses of a Radial Flow Centrifugal Pump
,”
ASME J. Eng. Gas Turbines Power
,
82
(
2
), pp.
136
143
.
13.
Sorokes
,
J. M.
,
Borer
,
C. J.
, and
Koch
,
J. M.
,
1998
, “
Investigation of the Circumferential Static Pressure Non-Uniformity Caused by a Centrifugal Compressor Discharge Volute
,”
ASME
Paper No. 98-GT-326.
14.
Zheng
,
X.
,
Jin
,
L.
, and
Tamaki
,
H.
,
2013
, “
Influence of Volute Distortion on the Performance of Turbocharger Centrifugal Compressor With Vane Diffuser
,”
Sci. China Technol. Sci.
,
56
(
11
), pp.
2778
2786
.
15.
Zheng
,
X.
,
Jin
,
L.
, and
Tamaki
,
H.
,
2014
, “
Influence of Volute-Induced Distortion on the Performance of a High-Pressure-Ratio Centrifugal Compressor With a Vaneless Diffuser for Turbocharger Applications
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
4
), pp.
440
450
.
16.
Yang
,
M.
,
Zheng
,
X.
,
Zhang
,
Y.
,
Bamba
,
T.
,
Tamaki
,
H.
,
Huenteler
,
J.
, and
Li
,
Z.
,
2013
, “
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control-Part I: Non-Axisymmetrical Flow in Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021006
.
17.
Rezaei
,
H.
,
2001
, “
Investigation of the Flow Structure and Loss Mechanism in a Centrifugal Compressor Volute
,” Ph.D. thesis, Michigan State University, East Lansing, MI.
18.
Reunanen
,
A.
,
2001
, “
Experimental and Numerical Analysis of Different Volutes in a Centrifugal Compressor
,” Ph.D thesis, Acta Universitatis Lappeenrantaensis, Lappeenranta, Finland.
19.
Mojaddam
,
M.
,
Hajilouy-Benisi
,
A.
, and
Movahhedy
,
M. R.
,
2012
, “
Investigation on Effect of Centrifugal Compressor Volute Cross-Section Shape on Performance and Flow Field
,”
ASME
Paper No. GT2012-69454.
20.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
.
21.
Bullock
,
R. O.
,
Wilcox
,
W. W.
, and
Moses
,
J. J.
,
1946
, “
Experimental and Theoretical Studies of Surging in Continuous-Flow Compressors
,” National Advisory Committee for Aeronautics, Cleveland, OH, NASA Report No.
861
.https://ntrs.nasa.gov/search.jsp?R=19930091933
22.
Dean
,
R. C.
,
1974
, “
The Fluid Dynamic Design of Advanced Centrifugal Compressors
,” Lectures, von Karman Institute, Brussels, Belgium.
23.
Bourgeois
,
J. A.
,
Martinuzzi
,
R. J.
,
Savory
,
E.
,
Zhang
,
C.
, and
Roberts
,
D. A.
,
2010
, “
Assessment of Turbulence Model Predictions for an Aero-Engine Centrifugal Compressor
,”
ASME J. Turbomach.
,
133
(
1
), p.
011025
.
24.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries
, La Canada, CA.
25.
NUMECA International
, 2006, “
NUMECA FINE/Turbo User Manual 7.1
,” NUMECA International, Brussel, Belgium.
26.
Gu
,
F.
, and
Engeda
,
A.
,
2001
, “
A Numerical Investigation on the Volute/Impeller Steady-State Interaction Due to Circumferential Distortion
,”
ASME
Paper No. 2001-GT-0328.
27.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.
28.
Sundström
,
E.
,
Semlitsch
,
B.
, and
Mihaescu
,
M.
,
2014
, “
Assessment of the 3D Flow in a Centrifugal Compressor Using Steady-State and Unsteady Flow Solvers
,”
SAE
Paper No. 2014-01-2856.
29.
Japikse
,
D.
,
1988
,
Centrifugal Compressor Design and Performance
,
Concepts ETI
, Wilder, VT.
30.
Zheng
,
X.
,
Huenteler
,
J.
,
Yang
,
M.
,
Zhang
,
Y.
, and
Bamba
,
T.
,
2010
, “
Influence of the Volute on the Flow in a Centrifugal Compressor of a High-Pressure Ratio Turbocharger
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
8
), pp.
1157
1169
.
31.
Fatsis
,
A.
,
Pierret
,
S.
, and
Van den Braembussche
,
R.
,
1997
, “
Three-Dimensional Unsteady Flow and Forces in Centrifugal Impellers With Circumferential Distortion of the Outlet Static Pressure
,”
ASME J. Turbomach.
,
119
(
1
), pp.
94
102
.
You do not currently have access to this content.