The presence and accretion of airborne particulates, including ash, sand, dust, and other compounds, in gas turbine engines can adversely affect performance and life of components. Engine experience and experimental work have shown that the thickness of accreted layers of these particulates can become large relative to the engine components on which they form. Numerical simulation to date has largely ignored the effects of resultant changes in the passage geometry due to the build-up of deposited particles. This paper will focus on updating the boundaries of the flow volume geometry by integrating the deposited volume of particulates on the solid surface. The technique is implemented using a novel, coupled deposition-dynamic mesh morphing (DMM) approach to the simulation of particulate-laden flows using Reynolds-averaged Navier–Stokes modeling of the bulk fluid, and Lagrangian-based particulate tracking. On an iterative basis, the particle deposition distributions are used to modify the surface topology by altering the locations of surface nodes, which modifies the mesh. The continuous phase solution and particle tracking are then recalculated. The sensitivity to the modeling time steps employed is explored. An impingement geometry case is used to assess the validity of the technique, and a passage with film cooling holes is interrogated. Differences are seen for all sticking and solid phase motion models employed. At small solid particle sizes, considerable disparity is observed between the particle motion modeling approaches, while the position and level of accretion is altered through the use of a nonisotropic stick and bounce model.

References

1.
Chambers
,
J. C. A.
,
1982
, “
The 1982 Encounter of British Airways 77 With the Mt. Galuggung Eruption Cloud
,”
AIAA
Paper No. 85-0097.
2.
Casadevall
,
T.
,
1994
, “
The 1989-1990 Eruption of Mt. Redoubt Volcano, Alaska: Impacts on Aircraft Operations
,”
J. Volcanol. Geotherm. Res.
,
62
(1–4), pp.
301
316
.
3.
Bucknell
,
A.
,
Gillespie
,
D. R. H.
, and
McGilvray
,
M.
,
2017
, “
Heat Transfer in the Core Compressor Under Ice Crystal Icing Conditions
,”
ASME
Paper No. GT2017-63077.
4.
Cardwell
,
N.
,
Thole
,
K.
, and
Burd
,
S.
,
2010
, “
Investigation of Sand Blocking Within Impingement and Film-Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
), p.
021020
.
5.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J.
,
2016
, “
Deposition of a Cooled Nozzle Guide Vane With Nonuniform Inlet Temperatures
,”
ASME J. Turbomach.
,
138
(
10
), p.
101005
.
6.
Lundgreen
,
R.
,
Sacco
,
C.
,
Prenter
,
R.
, and
Bons
,
J.
,
2016
, “
Temperature Effects on Nozzle Guide Vane Deposition in a New Turbine Cascade Rig
,”
ASME
Paper No. GT2016-57560.
7.
Whitaker
,
S.
,
Prenter
,
R.
, and
Bons
,
J.
, 2016, “
The Effect of Freestream Turbulence on Deposition for Nozzle Guide Vanes
,”
ASME J. Turbomach.
,
137
(
12
), p.
121001
.
8.
Walsh
,
W.
,
Thole
,
K.
, and
Joe
,
C.
,
2006
, “
Effects of Sand Ingestion on the Blockage of Film-Cooling Holes
,”
ASME
Paper No. GT2006-90067.
9.
Wylie
,
S.
,
Bucknell
,
A.
,
Forsyth
,
P.
,
McGilvray
,
M.
, and
Gillespie
,
D.
,
2017
, “
Reduction in Flow Parameter Resulting From Volcanic Ash Deposition in Engine-Representative Cooling Passages
,”
ASME J. Turbomach.
,
139
(
3
), p.
031008
.
10.
Clum
,
C.
,
Casaday
,
B.
,
Bokar
,
E.
, and
Bons
,
J.
,
2014
, “
Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane—Part I: Experimental Investigation
,”
ASME
Paper No. GT2014-27150.
11.
Wakeman
,
T.
, and
Tabakoff
,
W.
,
1982
, “
Measured Particle Rebound Characteristics Useful for Erosion Prediction
,”
ASME
Paper No. 82-GT-170.
12.
Tabakoff
,
W.
,
Malak
,
M.
, and
Hamed
,
A.
,
1987
, “
Laser Measurements of Solid-Particle Rebound Parameters Impacting on 2024 Aluminium and 6Al-4V Titanium Alloys
,”
AIAA J.
,
25
(
5
), pp.
721
726
.
13.
Bons
,
J.
,
Blunt
,
R.
, and
Whitaker
,
S.
,
2015
, “
A Comparison of Techniques for Particle Rebound Measurement in Gas Turbine Applications
,”
ASME
Paper No. GT2015-43677.
14.
Reagle
,
C.
,
Delimont
,
J.
,
Ng
,
W.
, and
Ekkad
,
S.
,
2014
, “
Study of Microparticle Rebound Characteristics Under High Temperature Conditions
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011501
.
15.
Bons
,
J.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2016
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME
Paper No. GT2016-56697.
16.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Impacts in Gas Turbine Components
,”
ASME
Paper No. GT2013-95623.
17.
Whitaker
,
S.
,
Peterson
,
B.
,
Miller
,
A.
, and
Bons
,
J.
,
2016
, “
The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry
,”
ASME
Paper No. GT2016-57413.
18.
Venturini
,
P.
,
Borello
,
D. H. K.
, and
Rispoli
,
F.
,
2012
, “
Modelling of Particles Deposition in an Environment Relevant to Solid Fuel Boilers
,”
Appl. Therm. Eng.
,
49
(
1
), pp.
131
138
.
19.
Gosman
,
A.
, and
Ionnides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fuelled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.
20.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P.
,
2014
, “
Quantitative CFD Analyses of Particle Deposition on a Subsonic Axial Compressor Blade—Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.
21.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2000
, “
Effect of Turbulence Modelling on Particle Dispersion and Deposition on Compressor and Turbine Blade Surfaces
,”
ASME
Paper No. 2000-GT-0519.
22.
Liu
,
B. Y. H.
, and
Agarwal
,
J. K.
,
1974
, “
Experimental Observation of Aerosol Deposition in Turbulent Flow
,”
J. Aerosol Sci.
,
5
(2), pp. 145–155.
23.
Dehbi
,
A.
,
2008
, “
Turbulent Particle Dispersion in Arbitrary Wall-Bounded Geometries: A Coupled CFD-Langevin-Equation Based Approach
,”
Int. J. Multiphase Flow
,
34
(
9
), pp.
819
828
.
24.
Forsyth
,
P.
,
Gillespie
,
D.
, and
McGilvray
,
M.
,
2016
, “
Validation and Assessment of the Continuous Random Walk Model for Particle Deposition in Gas Turbine Engines
,”
ASME
Paper No. GT2016-57332.
25.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J.
,
2016
, “
Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks
,”
ASME
Paper No. GT2016-57815.
26.
Tian
,
L.
, and
Ahmadi
,
G.
,
2006
, “
Particle Deposition in Turbulent Duct Flows—Comparisons of Different Model Predictions
,”
J. Aerosol Sci.
,
38
(
4
), pp.
377
397
.
27.
Ghahramani
,
E.
,
Abouali
,
O.
,
Emad
,
H.
, and
Ahmadi
,
G.
,
2014
, “
Numerical Analysis of Stochastic Dispersion of Micro-Particles in Turbulent Flows in a Realistic Model of Human Nasal/Upper Airway
,”
J. Aerosol Sci.
,
67
(
1
), pp.
188
206
.
28.
Rybalko
,
M.
,
Loth
,
E.
, and
Lankford
,
D.
,
2012
, “
A Lagrangian Particle Random Walk Model for Hybrid RANS/LES Turbulent Flows
,”
Powder Technol.
,
221
(
1
), pp.
105
113
.
29.
Chibbaro
,
S.
, and
Minier
,
J.-P.
,
2008
, “
Langevin PDF Simulation of Particle Deposition in a Turbulent Pipe Flow
,”
Aerosol Sci.
,
39
(
7
), pp.
555
571
.
30.
Mehel
,
A.
,
Taniere
,
A.
,
Oesterle
,
A.
, and
Fontaine
,
J.-R.
,
2010
, “
The Influence of an Anisotropic Langevin Dispersion Model on the Prediction of Micro-and Nanoparticle Deposition in Wall-Bounded Turbulent Flows
,”
J. Aerosol Sci.
,
41
(
8
), pp.
729
744
.
31.
Cao
,
Y.
,
Huang
,
J.
,
Xu
,
Z.
, and
Yin
,
J.
,
2016
, “
Insight Into Rime Ice Accretion on an Aircraft Wing and Corresponding Effects on Aerodynamic Performance
,”
Aeronaut. J.
,
120
(
1229
), pp.
1101
1122
.
32.
Shen
,
Z.
,
Lin
,
G.
,
Yu
,
J.
,
Bu
,
Z.
, and
Du
,
C.
,
2013
, “
Three-Dimensional Numerical Simulation of Ice Accretion at the Engine Inlet
,”
J. Aircr.
,
50
(
2
), pp.
635
642
.
33.
Casaday
,
B.
,
Clum
,
C.
, and
Bons
,
J.
,
2014
, “
Particle Deposition in Internal Cooling Cavities of a Nozzle Guide Vane—Part II: Analytical and Computational Modelling
,”
ASME
Paper No. GT2014-27155.
34.
ANSYS,
2011
, “
Fluent User Defined Function Manual
,” ANSYS Inc., Canonsburg, PA.
35.
ANSYS,
2011
, “
Fluent 14 Theory Guide
,” ANSYS Inc., Canonsburg, PA.
36.
Rosin
,
P.
, and
Rammler
,
E.
,
1933
, “
The Laws Governing the Fineness of Powdered Coal
,”
J. Inst. Fuel
,
7
(
1
), pp.
29
36
.
37.
Schmuecker
,
M.
,
2012
, “
Einfluss von Mineralstaeuben auf Keramische Solarabsorber
,” DLR-Sonnenkolloquium, Cologne.
38.
Eppelbaum
,
L.
,
2014
, “
Lecture Notes in Earth System Sciences
,”
Applied Geothermics
, Springer, Berlin.
You do not currently have access to this content.