Micro gas turbines (mGTs) offer several advantages for small-scale combined heat and power (CHP) production compared to their main competitors, the internal combustion engines (ICEs), such as low vibration level, cleaner exhaust, and less maintenance. The major drawback is their lower electrical efficiency, which makes them economically less attractive and explains their low market penetration. Next to improving the efficiency of the components of the traditional recuperated mGT, shifting toward more innovative cycles may help enhancing the performance and the flexibility of mGTs. One interesting solution is the introduction of water in the mGT cycle—either as auto-raised steam or hot liquid—preheated with the waste heat from the exhaust gases. The so-called humidification of the mGT cycle has the potential of increasing the electrical performance and flexibility of the mGT, resulting in a higher profitability. However, despite the proven advantages of mGT humidification, only few of these engines have been experimentally tested and up to now, no cycle is commercially available. With this paper, we give a comprehensive review of the literature on research and development of humidified mGTs: we examine the effect of humidification both on the improvement of the cycle efficiency and flexibility and on the performance of the specific mGT components. Additionally, we will present the different possible layouts, both focusing on the numerical and experimental work. Finally, we pinpoint the technological challenges that need to be overcome for humidified mGTs to be viable. In conclusion, humidification of mGT cycles offers great potential for enhancing the cycle's electrical efficiency and flexibility, but further research is necessary to make the technology commercially available.

References

1.
Pilavachi
,
P. A.
,
2002
, “
Mini- and Micro-Gas Turbines for Combined Heat and Power
,”
Appl. Therm. Eng.
,
22
(
18
), pp.
2003
2014
.
2.
U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Office of Power Technologies
,
2000
, “
Advanced Microturbine Systems—Program Plan for Fiscal Years 2000 Through 2006
,” U.S. Department of Energy, Washington, DC, accessed Nov. 14, 2017, http://www.bioturbine.org/Publications/PDF/DOE-ProgramPlan-2000.pdf
3.
Frost & Sullivan
,
2011
, “
Combined Heat and Power: Integrating Biomass Technologies in Buildings for Efficient Energy Consumption
,” Frost & Sullivan, Mountain View, CA.
4.
Pepermans
,
G.
,
Driesen
,
J.
,
Haeseldonckx
,
D.
,
Belmans
,
R.
, and
D'haeseleer
,
W.
,
2005
, “
Distributed Generation: Definition, Benefits and Issues
,”
Energy Policy
,
33
(
6
), pp.
787
798
.
5.
Ansaldo Energia
,
2016
, “
AE-T100 Micro Turbine—Natural Gas
,” Ansaldo Energy, Genoa, Italy, accessed Nov. 14, 2017, https://www.ansaldoenergia.com/PublishingImages/Microturbines/AE-T100NG.pdf
6.
Cenergy
,
2013
, “
Technical Spec Sheet—NATURAL GAS CHP Module—Energy Conversion System—60 Hz– 480V–3Ph
,” Cenergy, Houston, TX.
7.
McDonald
,
C. F.
,
2003
, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
,
23
(
12
), pp.
1463
1487
.
8.
McDonald
,
C. F.
, and
Rodgers
,
C.
,
2005
, “
Ceramic Recuperator and Turbine: The Key to Achieving a 40 Percent Efficient Microturbine
,”
ASME
Paper No. GT2005-68644.
9.
Zornek
,
T.
,
Monz
,
T.
, and
Aigner
,
M.
,
2015
, “
Performance Analysis of the Micro Gas Turbine Turbec T100 With a New FLOX-Combustion System for Low Calorific Fuels
,”
Appl. Energy
,
159
, pp.
276
284
.
10.
Capstone
,
2003
, “
Product Datasheet: Capstone C30
,” Capstone, Chatsworth, CA, accessed Mar. 10, 2017, https://www.capstoneturbine.com/products/c30
11.
Capstone
,
2003
, “
Product Datasheet: Capstone C65
,” Capstone, Chatsworth, CA, accessed Mar. 10, 2017, https://www.capstoneturbine.com/products/c65
12.
Capstone
,
2009
, “
Product Datasheet: Capstone C200
,” Capstone, Chatsworth, CA, accessed Mar. 10, 2017, https://www.capstoneturbine.com/products/c200
13.
Flexenergy
,
2015
, “
FLEX TURBINE™ GT250S
,” Flexenergy, Porthsmouth, NH, accessed Aug. 11, 2017, http://www.flexenergy.com/wp-content/uploads/2016/07/71000066_Flex_Turbine_GT250S_Spec_Sheet.pdf
14.
Flexenergy
,
2015
, “
FLEX TURBINE™ GT333S
,” Flexenergy, Porthsmouth, NH, accessed Aug. 11, 2017, http://www.flexenergy.com/wp-content/uploads/2016/07/71000067_Flex_Turbine_GT333S_Spec_Sheet.pdf
15.
Soares, C., 2007,
Microturbines: Applications for Distributed Energy Systems
, Elsevier, Amsterdam, The Netherlands.
16.
Jonsson
,
M.
, and
Yan
,
J.
,
2005
, “
Humidified Gas Turbines: A Review of Proposed and Implemented Cycles
,”
Energy
,
30
(
7
), pp.
1013
1078
.
17.
Dryer
,
F.
,
1977
, “
Water Addition to Practical Combustion Systems: Concepts and Applications
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
279
295
.
18.
Mazas
,
A. N.
,
Lacoste
,
D. A.
, and
Schuller
,
T.
,
2010
, “
Experimental and Numerical Investigation on the Laminar Flame Speed of CH4/O2 Mixtures Diluted With CO2 and H2O
,”
ASME
Paper No. GT2010-22512.
19.
Dodo
,
S.
,
Nakano
,
S.
,
Inoue
,
T.
,
Ichinose
,
M.
,
Yagi
,
M.
,
Tsubouchi
,
K.
,
Yamaguchi
,
K.
, and
Hayasaka
,
Y.
,
2004
, “
Development of an Advanced Microturbine System Using Humid Air Turbine Cycle
,”
ASME
Paper No. GT2004-54337.
20.
Nakano
,
S.
,
Kishibe
,
T.
,
Araki
,
H.
,
Yagi
,
M.
,
Tsubouchi
,
K.
,
Ichinose
,
M.
,
Hayasaka
,
Y.
,
Sasaki
,
M.
,
Inoue
,
T.
,
Yamaguchi
,
K.
, and
Shiraiwa
,
H.
,
2007
, “
Development of a 150 kW Microturbine System Which Applies the Humid Air Turbine Cycle
,”
ASME
Paper No. GT2007-28192.
21.
Williamson
,
T.
,
Luker
,
M.
, and
Hack
,
R.
,
2005
, “
Microturbine Performance Improvement Through the Implementation of Inlet Air Cooling
,”
ASME
Paper No. GT2005-68377.
22.
Brandon
,
R.
,
Halliday
,
B.
, and
Hoffman
,
J. S.
,
2006
, “
Inlet Air Supercharging of a 70 kW Microturbine
,”
ASME
Paper No. GT2006-90555.
23.
Renzi
,
M.
,
Caresana
,
F.
,
Pelagalli
,
L.
, and
Comodi
,
G.
,
2014
, “
Enhancing Micro Gas Turbine Performance Through Fogging Technique: Experimental Analysis
,”
Appl. Energy
,
135
, pp.
165
173
.
24.
Bhargava
,
R.
,
Meher-Homji
,
C.
,
Chaker
,
M.
,
Bianchi
,
M.
,
Melino
,
F.
,
Peretto
,
A.
, and
Ingistov
,
S.
,
2007
, “
Gas Turbine Fogging Technology: A State-of-the-Art Review—Part II: Overspray Fogging—Analytical and Experimental Aspects
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
454
460
.
25.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2013
, “
Water Injection in a Micro Gas Turbine—Assessment of the Performance Using a Black Box Method
,”
Appl. Energy
,
112
, pp.
1291
1302
.
26.
De Paepe
,
W.
,
Contino
,
F.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2014
, “
Optimal Waste Heat Recovery in Micro Gas Turbine Cycles Through Liquid Water Injection
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
846
856
.
27.
Lee
,
J. J.
,
Jeon
,
M. S.
, and
Kim
,
T. S.
,
2010
, “
The Influence of Water and Steam Injection on the Performance of a Recuperated Cycle Microturbine for Combined Heat and Power Application
,”
Appl. Energy
,
87
(
4
), pp.
1307
1316
.
28.
Zhang
,
S.
, and
Xiao
,
Y.
,
2006
, “
Steady-State Off-Design Thermodynamic Performance Analysis of a Humid Air Turbine Based on a Micro Turbine
,”
ASME
Paper No. GT2006-90335.
29.
Mochizuki
,
K.
,
Shibata
,
S.
,
Inoue
,
U.
,
Tsuchiya
,
T.
,
Sotouchi
,
H.
, and
Okamoto
,
M.
,
2005
, “
New Concept of a Micro Gas Turbine Based Co-Generation Package for Performance Improvement in Practical Use
,”
ASME
Paper No. PWR2005-50364.
30.
Delattin
,
F.
,
Bram
,
S.
,
Knoops
,
S.
, and
De Ruyck
,
J.
,
2008
, “
Effects of Steam Injection on Microturbine Efficiency and Performance
,”
Energy
,
33
(
2
), pp.
241
247
.
31.
Stathopoulos
,
P.
, and
Paschereit
,
C.
,
2015
, “
Retrofitting Micro Gas Turbines for Wet Operation. a Way to Increase Operational Flexibility in Distributed CHP Plants
,”
Appl. Energy
,
154
, pp.
438
446
.
32.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2012
, “
Steam Injection Experiments in a Microturbine—A Thermodynamic Performance Analysis
,”
Appl. Energy
,
97
, pp.
569
576
.
33.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
,
Contino
,
F.
, and
De Ruyck
,
J.
,
2013
, “
A Study on the Performance of Steam Injection in a Typical Micro Gas Turbine
,”
ASME
Paper No. GT2013-94569.
34.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Traverso
,
A. N.
, and
Massardo
,
A. F.
,
2012
, “
Hybrid System Test Rig: Chemical Composition Emulation With Steam Injection
,”
Appl. Energy
,
97
, pp.
809
815
.
35.
Renzi
,
M.
,
Riolfi
,
C.
, and
Baratieri
,
M.
,
2016
, “
Influence of the Syngas Feed on the Combustion Process and Performance of a Micro Gas Turbine With Steam Injection
,”
Energy Procedia
,
105
, pp.
1665
1670
.
36.
Loujendi
,
D. N.
,
Sani
,
K. A.
,
Tofigh
,
A. A.
,
Majidian
,
A.
, and
Jouybari
,
H. J.
,
2012
, “
An Economical Evaluation of the Water/Steam Injection in a CHP Microturbine Cycle
,”
J. Eng. Sci. Technol. Rev.
,
5
(
2
), pp.
20
25
.
37.
Stathopoulos
,
P.
, and
Paschereit
,
C. O.
,
2015
, “
Operational Strategies of Wet Cycle Micro Gas Turbines and Their Economic Evaluation
,”
ASME J. Eng. Gas Turbines Power
,
138
(12), p.
122301
.
38.
Rao
,
A. D.
,
1989
, “
Process for Producing Power
,” Fluor Corporation, Irving, TX, U.S. Patent No.
US4829763 A
.
39.
Parente
,
J.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2003
, “
Micro Humid Air Cycle—Part A: Thermodynamic and Technical Aspects
,”
ASME
Paper No. GT2003-38326.
40.
Nikpey
,
H.
,
Majoumerd
,
M. M.
,
Assadi
,
M.
, and
Breuhaus
,
P.
,
2014
, “
Thermodynamic Analysis of Innovative Micro Gas Turbine Cycles
,”
ASME
Paper No. GT2014-26917.
41.
Majoumerd
,
M. M.
,
Somehsaraei
,
H. N.
,
Assadi
,
M.
, and
Breuhaus
,
P.
,
2014
, “
Micro Gas Turbine Configurations With Carbon Capture—Performance Assessment Using a Validated Thermodynamic Model
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
172
184
.
42.
Montero Carrero
,
M.
,
Ferrari
,
M. L.
,
De Paepe
,
W.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2015
, “
Transient Simulations of a T100 Micro Gas Turbine Converted Into a Micro Humid Air Turbine
,”
ASME
Paper No. GT2015-43277.
43.
Wei
,
C.
, and
Zang
,
S.
,
2013
, “
Experimental Investigation on the Off-Design Performance of a Small-Sized Humid Air Turbine Cycle
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
166
176
.
44.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
, and
Contino
,
F.
,
2014
, “
T100 Micro Gas Turbine Converted to Full Humid Air Operation: Test Rig Evaluation
,”
ASME
Paper No. GT2014-26123.
45.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
, and Contino, F.,
2015
, “
T100 Micro Gas Turbine Converted to Full Humid Air Operation: A Thermodynamic Performance Analysis
,”
ASME
Paper No. GT2015-43267.
46.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2014
, “
Experimental Characterization of a T100 Micro Gas Turbine Converted to Full Humid Air Operation
,”
Energy Procedia
,
61
, pp.
2083
2088
.
47.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Magnusson
,
J.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2016
, “
Experimental Characterisation of a Humidified T100 Micro Gas Turbine
,”
ASME
Paper No. GT2016-57649.
48.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Magnusson
,
J.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2017
, “
Experimental Characterisation of a Micro Humid Air Turbine: Assessment of the Thermodynamic Performance
,”
Appl. Therm. Eng.
,
118
, pp.
796
806
.
49.
De Paepe
,
W.
,
Contino
,
F.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2014
, “
New Concept of Spray Saturation Tower for Micro Humid Air Turbine Applications
,”
Appl. Energy
,
130
, pp.
723
737
.
50.
Xu
,
Z.
,
Lu
,
Y.
, and
Xiao
,
Y.
,
2012
, “
Experimental Study on Performances of a Micro-Humid Air Turbine Cycle
,”
Proceedings of the Chinese Society of Electrical Engineering
, Vol.
32
, Chinese Society of Electrical Engineering, Shanghai, China, p. 35.
51.
Parente
,
J.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2003
, “
Micro Humid Air Cycle—Part B: Thermoeconomic Analysis
,”
ASME
Paper No. GT2003-38328.
52.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Parente
,
A.
, and
Contino
,
F.
,
2015
, “
T100 mGT Converted Into mHAT for Domestic Applications: Economic Analysis Based on Hourly Demand
,”
Appl. Energy
,
164
, pp.
1019
1027
.
53.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Bram
,
S.
,
Musin
,
F.
,
Parente
,
A.
, and
Contino
,
F.
,
2016
, “
Humidified Micro Gas Turbines for Domestic Users: An Economic and Primary Energy Savings Analysis
,”
Energy
,
117
(
2
), pp.
429
438
.
54.
Wan
,
K.
,
Zhang
,
S.
,
Wang
,
J.
, and
Xiao
,
Y.
,
2010
, “
Performance of Humid Air Turbine With Exhaust Gas Expanded to Below Ambient Pressure Based on Microturbine
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2127
2133
.
55.
De Ruyck
,
J.
,
Bram
,
S.
, and
Allard
,
G.
,
1997
, “
REVAP® Cycle: A New Evaporative Cycle Without Saturation Tower
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
893
897
.
56.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Contino
,
F.
, and
Parente
,
A.
,
2017
, “
Waste Heat Recovery Optimization in Micro Gas Turbine Applications Using Advanced Humidified Gas Turbine Cycle Concepts
,”
Appl. Energy
, in press.
57.
Çengel
,
Y.
, and
Boles
,
M.
,
2006
,
Thermodynamics: An Engineering Approach
(McGraw-Hill Series in Mechanical Engineering),
McGraw-Hill
,
Boston, MA
.
58.
Lagerström
,
G.
, and
Xie
,
M.
,
2002
, “
High Performance and Cost Effective Recuperator for Micro-Gas Turbines
,”
ASME
Paper No. GT2002-30402.
59.
Pezzini
,
P.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2013
, “
Avoiding Compressor Surge During Emergency Shutdown Hybrid Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
135
(10), p.
102602
.
60.
Hermann
,
F.
,
Klingmann
,
J.
, and
Gabrielsson
,
R.
,
2003
, “
Computational and Experimental Investigation of Emissions in a Highly Humidified Premixed Flame
,”
ASME
Paper No. GT2003-38337.
61.
Belokon
,
A. A.
,
Khritov
,
K. M.
,
Klyachko
,
L. A.
,
Tschepin
,
S. A.
,
Zakharov
,
V. M.
, and
George Opdyke
,
J.
,
2002
, “
Prediction of Combustion Efficiency and NOx Levels for Diffusion Flame Combustors in HAT Cycles
,”
ASME
Paper No. GT2002-30609,
62.
Wünning
,
J.
, and
Wünning
,
J.
,
1997
, “
Flameless Oxidation to Reduce Thermal No-Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
.
63.
Rodgers
,
C.
,
2000
, “
25-5 kWe Microturbine Design Aspects
,”
ASME
Paper No. 2000-GT-626.
64.
Lara-Curzio
,
E.
,
Trejo
,
R.
,
More
,
K.
,
Maziasz
,
P.
, and
Pint
,
B.
,
2004
, “
Screening and Evaluation of Materials for Microturbine Recuperators
,”
ASME
Paper No. GT2004-54254.
You do not currently have access to this content.