The life-limiting behavior of an N720/alumina oxide/oxide ceramic matrix composite (CMC) was assessed in tension in air at 1200 °C for unimpacted and impacted specimens. CMC targets were subjected to ballistic impact at ambient temperature with an impact velocity of 250 m/s under a full support configuration. Subsequent postimpact ultimate tensile strength was determined as a function of test rate in order to determine the susceptibility to delayed failure or slow crack growth (SCG). Unimpacted and impacted specimens exhibited a significant dependency of ultimate tensile strength on test rate such that the ultimate tensile strength decreased with decreasing test rate. Damage was characterized using X-ray computed tomography (CT) and scanning electron microscopy (SEM). A phenomenological life prediction model was developed in order to predict life from one loading condition (constant stress-rate loading) to another (constant stress loading). The model was verified in part via a theoretical preloading analysis.

References

1.
Choi
,
S. R.
,
Bansal
,
N. P.
, and
Verrilli
,
M. J.
,
2005
, “
Delayed Failure of Ceramic Matrix Composites in Tension at Elevated Temperatures
,”
J. Eur. Ceram. Soc.
,
25
(
9
), pp.
1629
1636
.
2.
Choi
,
S. R.
, and
Gyekenyesi
,
J. P.
,
2001
, “
Effect of Load Rate on Tensile Strength of Various CFCCs at Elevated Temperatures: An Approach to Life-Prediction Testing
,”
Ceram. Eng. Sci. Proc.
,
22
(
3
), pp.
597
606
.
3.
Choi
,
S. R.
,
Kowalik
,
R. W.
,
Alexander
,
D. J.
,
Bansal
., and
Narottam
,
P.
,
2009
, “
Elevated-Temperature Stress Rupture in Interlaminar Shear of a Hi-Nic SiC/SiC Ceramic Matrix Composite
,”
Compos. Sci. Technol.
,
69
(
7–8
), pp.
890
897
.
4.
Ruggles-Wrenn
,
M. B.
, and
Braun
,
J. C.
,
2008
, “
Effects of Steam Environment on Creep Behavior of NextelTM720/Alumina Ceramic Composite at Elevated Temperature
,”
Mater. Sci. Eng. A
,
497
(
1–2
), pp.
101
110
.
5.
Ruggles-Wrenn
,
M. B.
, and
Genelin
,
C. L.
,
2009
, “
Creep of NextelTM/Alumina-Mullite Ceramic Composite at 1200 °C in Air, Argon, and Steam
,”
Compos. Sci. Technol.
,
69
(
5
), pp.
663
669
.
6.
Choi
,
S. R.
, and
Bansal
,
N. P.
,
2006
, “
Interlaminar Tension/Shear Properties and Stress Rupture in Shear of Various Continuous Fiber-Reinforced Ceramic Matrix Composites
,”
Advances in Ceramic Matrix Composites XI; Ceramic Transactions
, Vol.
175
, Wiley, Hoboken, NJ, pp.
117
134
.
7.
Henager
,
C. H.
,
Lewinsohn
,
C. A.
, and
Jones
,
R. H.
,
2001
, “
Subcritical Crack Growth in CVI SiCf/SiC Composites at Elevated Temperatures: Effect of Fiber Creep Rate
,”
Acta Mater.
,
49
(
18
), pp.
3727
3738
.
8.
Choi
,
S. R.
,
Calvin
,
F. D.
, and
Alexander
,
D. J.
,
2014
, “
Foreign Object Damage by Spherical Steel Projectiles in an N720/Alumina Oxide/Oxide Ceramic Matrix Composites
,”
J. Am. Ceram. Soc.
,
97
(
12
), pp.
3926
3934
.
9.
Kedir
,
N.
,
Faucett
,
D. C.
,
Sanchez
,
L.
, and
Choi
,
S. R.
, “
Foreign Object Damage Behavior of a SiC Fibrous Ceramic Composite
,”
ASME
Paper No. GT2017-63073.
10.
Choi
,
S. R.
,
2008
, “
Foreign Object Damage Phenomenon by Steel Ball Projectiles in a SiC/SiC Ceramic Matrix Composite at Ambient and Elevated Temperatures
,”
J. Am. Ceram. Soc.
,
91
(
9
), pp.
2963
2968
.
11.
Presby
,
M. J.
,
Morscher
,
G. N.
,
Iwano
,
C.
, and
Sullivan
,
B.
, “
Foreign Object Damage in 3-D Woven SiC/SiC Ceramic Matrix Composites of Varying Architectures at Ambient and High Temperatures
,”
ASME
Paper No. GT2017-63475.
12.
Kedir
,
N.
,
Faucett
,
D.
,
Sanchez
,
L.
, and
Choi
,
S. R.
,
2017
, “
Foreign Object Damage in an Oxide/Oxide Ceramic Matrix Composite Under Prescribed Tensile Loading
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p. 021301.
13.
Ogi
,
K.
,
Okabe
,
T.
,
Takahashi
,
M.
,
Yashiro
,
S.
, and
Yoshimura
,
A.
,
2010
, “
Experimental Characterization of High-Speed Impact Damage Behavior in a Three-Dimensionally Woven SiC/SiC Composite
,”
Compos. Part A
,
41
(
4
), pp.
489
498
.
14.
Herb
,
V.
,
Martin
,
E.
, and
Couegnat
,
G.
,
2012
, “
Damage Analysis of Thin 3D-Woven SiC/SiC Composite Under Low Velocity Impact
,”
Compos. Part A
,
43
(
2
), pp.
247
253
.
15.
Baker
,
C. R.
,
Maillet
,
E.
,
Morscher
,
G. N.
,
Gyekenyesi
,
A. L.
,
Choi
,
S. R.
, and
Abdi
,
F.
, “
High Velocity Impact Damage Assessment in SiC/SiC Composites
,”
ASME
Paper No. GT2014-26955.
16.
Presby
,
M. J.
,
Mansour
,
R.
,
Kannan
,
M.
,
Morscher
,
G. N.
,
Abdi
,
F.
,
Godines
,
C.
, and
Choi
,
S.
,
2017
, “
Damage Characterization of High Velocity Impact in Curved SiC/SiC Composites
,”
Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development; Ceramic Transactions
, Vol.
263
, Wiley, Hoboken, NJ, pp.
311
322
.
17.
Choi
,
S. R.
,
Alexander
,
D. J.
, and
Kowalik
,
R. W.
,
2008
, “
Foreign Object Damage in an Oxide/Oxide Composite at Ambient Temperature
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p. 021301.
18.
Simon
,
R. A.
,
2005
, “
Progress in Processing and Performance of Porous-Matrix Oxide/Oxide Composites
,”
Int. J. Appl. Ceram. Technol.
,
2
(
2
), pp.
141
149
.
19.
Zok
,
F. W.
,
2006
, “
Developments of Oxide Fiber Composites
,”
J. Am. Ceram. Soc.
,
89
(
11
), pp.
3309
3324
.
20.
Bhadeshia
,
H. K. D. H.
,
2012
, “
Steels for Bearings
,”
Prog. Mater. Sci.
,
57
(
2
), pp.
268
435
.
21.
ASTM
,
2017
, “
Standard Test Method for Monotonic Tensile Strength Testing of Continuous Fiber-Reinforced Advanced Ceramics With Solid Rectangular Cross-Section Specimens at Elevated Temperatures
,” ASTM International, West Conshohocken, PA, Standard No. ASTM C 1359.
22.
ASTM
,
2017
, “
Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Strength Testing at Ambient Temperature
,” ASTM International, West Conshohocken, PA, Standard No. ASTM C 1368.
23.
Choi
,
S. R.
,
Pereira
,
J. M.
,
Janosik
,
L. A.
, and
Bhatt
,
R. T.
,
2004
, “
Foreign Object Damage in Disks of Gas-Turbine-Grade Silicon Nitrides by Steel Ball Projectiles at Ambient Temperature
,”
J. Mater. Sci.
,
39
(
20
), pp.
6173
6182
.
24.
Milz
,
C.
,
Goering
,
J.
, and
Schneider
,
H.
,
1999
, “
Mechanical and Microstructural Properties of NextelTM 720 Relating to Its Suitability for High Temperature Application in CMCs
,”
23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings
, (Ceramic Engineering and Science Proceedings, Vol. 20), Wiley, Hoboken, NJ, pp.
191
198
.
25.
Goring
,
J.
, and
Schneider
,
H.
,
1997
, “
Creep and Subcritical Crack Growth of Nextel 720 Alumino Silicate Fibers as Received and After Heat Treatment at 1300C
,”
21st Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings
, Vol. 18, pp.
95
102
.
26.
ASTM,
2017
, “
Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Elevated Temperatures
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM C 1465
.
27.
Ruggles-Wrenn
,
M. B.
,
Mall
,
S.
,
Eber
,
C. A.
, and
Harlan
,
L. B.
,
2006
, “
Effects of Steam Environment on High Temperature Mechanical Behavior of NextelTM720/Alumina (N720/A) Continuous Fiber Ceramic Composite
,”
Compos. Part A
,
37
(
11
), pp.
2029
2040
.
28.
Ritter
,
J. E.
,
Bandyopadhyay
,
N.
, and
Jakus
,
K.
,
1981
, “
Statistical Reproducibility of the Dynamic and Static Fatigue Experiments
,”
Am. Ceram. Soc. Bull.
,
60
(
8
), pp.
798
806
.
29.
ASTM,
2017
, “
Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Flexural Testing (Stress Rupture) at Elevated Temperatures
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM C 1834.
30.
Choi
,
S. R.
, and
Gyekenyesi
,
J.
, and
P.
,
1998
, “
Some Limitations in the Elevated-Temperature, Constant Stress-Rate Flexural Testing for Advanced Ceramics With Reference to the New, Ambient-Temperature Test Standard ASTM C 1368
,”
22nd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings
(Ceramic Engineering and Science Proceedings, Vol. 19), Wiley, Hoboken, NJ, pp.
595
605
.
31.
McLaren
,
J. R.
, and
Davidge
,
R. W.
,
1975
, “
The Combined Influence of Stress, Time, Temperature on the Strength of Polycrystalline Alumina
,”
Proc. Br. Ceram. Soc.
,
25
, pp.
151
167
.
You do not currently have access to this content.