One method frequently used to reduce NOx emissions is exhaust gas recirculation, where a portion of the exhaust gases, including NOx, is reintroduced into the combustion chamber. While a significant amount of research has been performed to understand the important fuel/NOx chemistry, more work is still necessary to improve the current understanding on this chemistry and to refine detailed kinetics models. To validate models beyond global kinetics data, such as ignition delay time or flame speed, the formation of H2O was recorded using a laser absorption diagnostic during the oxidation of a mixture representing a simplistic natural gas (90% CH4/10% C2H6 (mol)). This mixture was studied at a fuel lean condition (equivalence ratio = 0.5) and at atmospheric pressure. Unlike in conventional fuel-air experiments, NO2 was used as the oxidant to better elucidate the important, fundamental chemical kinetics by exaggerating the interaction between NOx and hydrocarbon-based species. Results showed a peculiar water formation profile, compared to a former study performed in similar conditions with O2 as oxidant. In the presence of NO2, the formation of water occurs almost immediately before it reaches more or less rapidly (depending on the temperature) a plateau. Modern, detailed kinetics models predict the data with fair to good accuracy overall, while the GRI 3.0 mechanism is proven inadequate for reproducing CH4/C2H6 and NO2 interactions.

References

1.
Cameretti
,
M. C.
,
Piazzesi
,
R.
,
Reale
,
F.
, and
Tuccillo
,
R.
,
2009
, “
Combustion Simulation of an Exhaust Gas Recirculation Operated Micro-Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
131
(
5
), p.
051701
.
2.
Mueller
,
M.
,
Yetter
,
R.
, and
Dryer
,
F.
,
1999
, “
Flow Reactor Studies and Kinetic Modeling of the H2/O2/NOx and CO/H2O/O2/NOx Reactions
,”
Int. J. Chem. Kinet.
,
31
, pp.
705
724
.
3.
Dayma
,
G.
, and
Dagaut
,
P.
,
2006
, “
Effects of Air Contamination on the Combustion of Hydrogen-Effect of NO and NO2 Addition on Hydrogen Ignition and Oxidation Kinetics
,”
Combust. Sci. Technol.
,
178
(
10–11
), pp.
1999
2024
.
4.
Rasmussen
,
C. L.
,
Hansen
,
J.
,
Marshall
,
P.
, and
Glarborg
,
P.
,
2008
, “
Experimental Measurements and Kinetic Modeling of CO/H2/O2/NOx Conversion at High Pressure
,”
Int. J. Chem. Kinet.
,
40
(
8
), pp.
454
480
.
5.
Mathieu
,
O.
,
Levacque
,
A.
, and
Petersen
,
E.
,
2013
, “
Effects of NO2 Addition on Hydrogen Ignition behind Reflected Shock Waves
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
633
640
.
6.
Mathieu
,
O.
,
Levacque
,
A.
, and
Petersen
,
E.
,
2012
, “
Effects of N2O Addition on the Ignition of H2–O2 Mixtures: Experimental and Detailed Kinetic Modeling Study
,”
Int. J. Hydrogen Energy
,
37
(
20
), pp.
15393
15405
.
7.
Mével
,
R.
,
Javoy
,
S.
,
Lafosse
,
F.
,
Chaumeix
,
N.
,
Dupré
,
G.
, and
Paillard
,
C.-E.
,
2009
, “
Hydrogen–Nitrous Oxide Delay Times: Shock Tube Experimental Study and Kinetic Modelling
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
359
366
.
8.
Slack
,
M. W.
, and
Grillo
,
A. R.
,
1981
, “
Shock Tube Investigation of Methane-Oxygen Ignition Sensitized by NO2
,”
Combust. Flame
,
40
, pp.
155
172
.
9.
Dagaut
,
P.
, and
Nicolle
,
A.
,
2005
, “
Experimental Study and Detailed Kinetic Modeling of the Effect of Exhaust Gas on Fuel Combustion: Mutual Sensitization of the Oxidation of Nitric Oxide and Methane Over Extended Temperature and Pressure Ranges
,”
Combust. Flame
,
140
(
3
), pp.
161
171
.
10.
Gersen
,
S.
,
Mokhov
,
A. V.
,
Darmeveil
,
J. H.
,
Levinsky
,
H. B.
, and
Glarborg
,
P.
,
2011
, “
Ignition-Promoting Effect of NO2 on Methane, Ethane and Methane/Ethane Mixtures in a Rapid Compression Machine
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
433
440
.
11.
Mathieu
,
O.
,
Pemelton
,
J. M.
,
Bourque
,
G.
, and
Petersen
,
E. L.
,
2015
, “
Shock-Induced Ignition of Methane Sensitized by NO2 and N2O
,”
Combust. Flame
,
162
(
8
), pp.
3053
3070
.
12.
Deng
,
F.
,
Yang
,
F.
,
Zhang
,
P.
,
Pan
,
Y.
,
Bugler
,
J.
,
Curran
,
H. J.
,
Zhang
,
Y.
, and
Huang
,
Z.
,
2016
, “
Towards a Kinetic Understanding of the NOx Promoting-Effect on Ignition of Coalbed Methane: A Case Study of Methane/Nitrogen Dioxide Mixtures
,”
Fuel
,
181
, pp.
188
198
.
13.
Faravelli
,
T.
,
Frassoldati
,
A.
, and
Ranzi
,
E.
,
2003
, “
Kinetic Modeling of the Interactions Between NO and Hydrocarbons in the Oxidation of Hydrocarbons at Low Temperatures
,”
Combust Flame
,
132
(
1–2
), pp.
188
207
.
14.
Dagaut
,
P.
,
Mathieu
,
O.
,
Nicolle
,
A.
, and
Dayma
,
G.
,
2005
, “
Experimental Study and Detailed Kinetic Modeling of the Mutual Sensitization of the Oxidation of Nitric Oxide, Ethylene and Ethane
,”
Combust. Sci. Technol.
,
177
(
9
), pp.
1767
1791
.
15.
Deng
,
F.
,
Pan
,
Y.
,
Sun
,
W.
,
Yang
,
F.
,
Zhang
,
Y.
, and
Huang
,
Z.
,
2017
, “
An Ignition Delay Time and Chemical Kinetic Study of Ethane Sensitized by Nitrogen Dioxide
,”
Fuel
,
207
, pp.
389
401
.
16.
Sivaramakrishnan
,
R.
,
Brezinsky
,
K.
,
Dayma
,
G.
, and
Dagaut
,
P.
,
2007
, “
High Pressure Effects on the Mutual Sensitization of the Oxidation of NO and CH4–C2H6 Blends
,”
Phys. Chem. Chem. Phys.
,
9
(
31
), pp.
4230
4244
.
17.
Herzler
,
J.
, and
Naumann
,
C.
,
2012
, “
Shock Tube Study of the Influence of NOx on the Ignition Delay Times of Natural Gas at High Pressure
,”
Combust. Sci. Technol.
,
184
(
10–11
), pp.
1635
1650
.
18.
Mathieu
,
O.
,
Mulvihill
,
C. R.
,
Petersen
,
E. L.
,
Zhang
,
Y.
, and
Curran
,
H. J.
,
2017
, “
CO and H2O Time-Histories in Shock-Heated Blends of Methane and Ethane for Assessment of a Chemical Kinetics Model
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121507
.
19.
Petersen
,
E. L.
,
Rickard
,
M. J. A.
,
Crofton
,
M. W.
,
Abbey
,
E. D.
,
Traum
,
M. J.
, and
Kalitan
,
D. M.
,
2005
, “
A Facility for Gas-and Condensed-Phase Measurements behind Shock Waves
,”
Meas. Sci. Technol.
,
16
(
9
), pp.
1716
1729
.
20.
Vivanco
,
J., E.
,
2014
, “
A New Shock-Tube Facility for the Study of High-Temperature Chemical Kinetics
,”
Master's thesis
, Texas A & M University, College Station, TX.https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/153885/VIVANCO-THESIS-2014.pdf?sequence=1
21.
Dana
,
V.
,
Devic
,
V. M.
,
Flaudh
,
J.-M.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Hartmann
,
J.-M.
,
Jucks
,
K. W.
,
Maki
,
A. G.
,
Mandin
,
J.-Y.
,
Massie
,
S. T.
,
Orphal
,
J.
,
Perrin
,
A.
,
Rinsland
,
C. P.
,
Smith
,
M. A. H.
,
Tennyson
,
J.
,
Tolchenov
,
R. N.
,
Toth
,
R. A.
,
Vander Auwera
,
J.
,
Varanasi
,
P.
, and
Wagner
,
G.
,
2005
, “
The HITRAN 2004 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
96
(
2
), pp.
139
204
.
22.
Li
,
H.
,
Farooq
,
A.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2008
, “
Diode Laser Measurements of Temperature-Dependent Collisional-Narrowing and Broadening Parameters of Ar-Perturbed H2O Transitions at 1391.7 and 1397.8 nm
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
1
), pp.
132
143
.
23.
Mathieu
,
O.
,
Mulvihill
,
C.
, and
Petersen
,
E. L.
,
2017
, “
Shock Tube Water Time-Histories and Ignition Delay Time Measurements for H2S near Atmospheric Pressure
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
4019
4027
.
24.
CHEMKIN-PRO 15131
,
2013
, “
ANSYS
,” San Diego, CA.
25.
Mendiara
,
T.
, and
Glarborg
,
P.
,
2009
, “
Reburn Chemistry in Oxy-Fuel Combustion of Methane
,”
Energy Fuels
,
23
(
7
), pp.
3565
3572
.
26.
Mendiara
,
T.
, and
Glarborg
,
P.
,
2009
, “
Ammonia Chemistry in Oxy-Fuel Combustion of Methane
,”
Combust. Flame
,
156
(
10
), pp.
1937
1949
.
27.
Konnov
,
A. A.
,
2009
, “
Implementation of the NCN Pathway of prompt-NO Formation in the Detailed Reaction Mechanism
,”
Combust. Flame
,
156
(
11
), pp.
2093
2105
.
28.
Zhang
,
Y.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,,
Bourque
,
G.
, and
Curran
,
H. J.
,
2017
, “
Assessing the Predictions of a NOx Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data
,”
Combust. Flame
,
182
, pp.
122
141
.
29.
Giménez-López
,
J.
,
Alzueta
,
M.
,
Rasmussen
,
C.
,
Marshall
,
P.
, and
Glarborg
,
P.
,
2011
, “
High Pressure Oxidation of C2H4/NO Mixtures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
449
457
.
30.
Zhang
,
K.
,
Zhang
,
L.
,
Xie
,
M.
,
Ye
,
L.
,
Zhang
,
F.
,
Glarborg
,
P.
, and
Qi
,
F.
,
2013
, “
An Experimental and Kinetic Modeling Study of Premixed Nitroethane Flames at Low Pressure
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
617
624
.
31.
Chai
,
J.
, and
Goldsmith
,
C. F.
,
2017
, “
Rate Coefficients for Fuel+NO2: Predictive Kinetics for HONO and HNO2 Formation
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
617
626
.
You do not currently have access to this content.