Abstract

Can-annular combustors consist of N distinct cans setup symmetrically around the axis of the gas turbine. Each can is connected to the turbine inlet by means of a transition duct. At the turbine inlet, a small gap between the neighboring transition ducts allows acoustic communication between the cans. Thermoacoustic pulsations in the cans are driven by the respective flames, but also the communication between neighboring cans through the gap plays a significant role. In this study, we focus on the effect of the background noise intensity and of the nonlinear flame saturation. We predict how usually clusters of thermoacoustic modes are unstable in the linear regime and compete with each other in the nonlinear regime, each cluster consisting of axial, azimuthal and push-pull modes. Since linear theory cannot predict the nonlinear solution, stochastic simulations are run to study the nonlinear solution in a probabilistic sense. One outcome of these simulations is the various pulsation patterns, which are in principle different from one can to the next. We recover how not only a stronger flame response in one can gives rise to the phenomenon of mode localization, but also how the nonlinearity of the flame saturation and the competition between modes have an effect on the nonlinear mode shape. We finally predict the coherence and phase between cans on the linearized system subject to noise, and compare the predictions with engine measurements, in terms of spectra of amplitude in each can and coherence and phase, observing a good match.

References

1.
Bethke
,
S.
,
Krebs
,
W.
,
Flohr
,
P.
, and
Prade
,
B.
,
2002
, “
Thermoacoustic Properties of Can Annular Combustors
,”
AIAA
Paper No. 2002-2570. 10.2514/6.2002-2570
2.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790. 10.1115/GT2017-64790
3.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
4.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2015
, “
A New Pattern of Instability Observed in an Annular Combustor: The Slanted Mode
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3237
3244
.10.1016/j.proci.2014.06.029
5.
Ghirardo
,
G.
,
Di Giovine
,
C.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2018
, “
Thermoacoustics of Can-Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011007
.10.1115/1.4040743
6.
Pierre
,
C.
, and
Cha
,
P. D.
,
1989
, “
Strong Mode Localization in Nearly Periodic Disordered Structures
,”
AIAA J.
,
27
(
2
), pp.
227
241
.10.2514/3.10085
7.
Pierre
,
C.
,
1988
, “
Mode Localization and Eigenvalue Loci Veering Phenomena in Disordered Structures
,”
J. Sound Vib.
,
126
(
3
), pp.
485
502
.10.1016/0022-460X(88)90226-X
8.
Farisco
,
F.
,
Panek
,
L.
,
Janus
,
B.
, and
Kok
,
J. B. W.
,
2015
, “
Numerical Investigation of the Thermo-Acoustic Influence of the Turbine on the Combustor
,”
ASME
Paper No. GT2015-42071. 10.1115/GT2015-42071
9.
Panek
,
L.
,
Huth
,
M.
, and
Farisco
,
F.
,
2017
, “
Thermo-Acoustic Characterization of Can-Can Interaction of a Can-Annular Combustion System Based on Unsteady CFD LES Simulation
,”
First Global Power and Propulsion Forum
, Zurich, Switzerland, Jan. 6–18, Paper No. GPPF-2017-81.
10.
Farisco
,
F.
,
Panek
,
L.
, and
Kok
,
J. B.
,
2017
, “
Thermo-Acoustic Cross-Talk Between Cans in a Can-Annular Combustor
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
452
469
.10.1177/1756827717716373
11.
Lieuwen
,
T.
,
2003
, “
Statistical Characteristics of Pressure Oscillations in a Premixed Combustor
,”
J. Sound Vib.
,
260
(
1
), pp.
3
17
.10.1016/S0022-460X(02)00895-7
12.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. A
,
469
(
20120535
), pp.
1
15
.10.1098/rspa.2012.0535
13.
Ghirardo
,
G.
,
Boudy
,
F.
, and
Bothien
,
M. R.
,
2018
, “
Amplitude Statistics Prediction in Thermoacoustics
,”
J. Fluid Mech.
,
844
, pp.
216
246
.10.1017/jfm.2018.173
14.
Marble
,
F. E.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
15.
Morse
,
P. M.
, and
Feshback
,
H.
,
1953
,
Methods of Theoretical Physics—Volume 2
,
McGraw-Hill
,
New York, Toronto; London
.
16.
Schuermans
,
B.
,
Polifke
,
W.
, and
Paschereit
,
C. O.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
ASME
Paper No. 99-GT-132. 10.1115/99-GT-132
17.
Brillouin
,
L.
,
1953
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
, 2nd ed.,
Dover Publications
,
Mineola, NY
, pp.
139
140
.
18.
Mensah
,
G. A.
,
Campa
,
G.
, and
Moeck
,
J. P.
,
2016
, “
Efficient Computation of Thermoacoustic Modes in Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081502
.10.1115/1.4032335
19.
Noiray
,
N.
,
Bothien
,
M. R.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.10.1080/13647830.2011.552636
20.
Orchini
,
A.
,
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2018
, “
Effects of Nonlinear Modal Interactions on the Thermoacoustic Stability of Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021002
.10.1115/1.4040768
21.
Dong
,
Y.
, and
Morgans
,
A. S.
,
2018
, “
Low-Order Network Modeling for Annular Combustors Exhibiting Longitudinal and Circumferential Modes
,”
ASME
Paper No. GT2018-76506. 10.1115/GT2018-76506
22.
Moeck
,
J. P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2018
, “
Nonlinear Thermoacoustic Mode Synchronization in Annular Combustors
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
1
8
.10.1016/j.proci.2018.05.107
23.
Triantafyllou
,
M. S.
, and
Triantafyllou
,
G. S.
,
1991
, “
Frequency Coalescence and Mode Localization Phenomena: A Geometric Theory
,”
J. Sound Vib.
,
150
(
3
), pp.
485
500
.10.1016/0022-460X(91)90899-U
24.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2003
, “
Modelling of Circumferential Modal Coupling Due to Helmholtz Resonators
,”
ASME
Paper No. GT2003-38168. 10.1115/GT2003-38168
25.
Parmentier
,
J.-F.
,
Salas
,
P.
,
Wolf
,
P.
,
Staffelbach
,
G.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2012
, “
A Simple Analytical Model to Study and Control Azimuthal Instabilities in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
7
), pp.
2374
2387
.10.1016/j.combustflame.2012.02.007
26.
Ghirardo
,
G.
,
Ćosić
,
B.
,
Juniper
,
M. P.
, and
Moeck
,
J. P.
,
2015
, “
State-Space Realization of a Describing Function
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
9
28
.10.1007/s11071-015-2134-x
You do not currently have access to this content.