Abstract

Fault tolerance is one of the practical and effective approaches to improve the reliability of magnetic bearings. The linearization of the electromagnetic force (EMF) from the redundant structures is the crucial basis of the design of a fault-tolerant controller. In this paper, we propose an accurate linearization approach for the heteropolar magnetic bearings with redundant structures by solving the Taylor series expansion equation of the current distribution matrix (W) in the nonequilibrium position and introducing a set of displacement compensation matrices to establish a unified accurate EMF model including the controlled current and rotor position. The proposed approach can effectively decrease the EMF error between the actual physical model and the linearized model compared with the existing methods for the consideration of the rotor position. Moreover, the solutions of the current distribution matrix and the relevant optimization approach have been presented on the basis of the proposed approach to help to design a high-performance fault-tolerant controller in the entire rotor displacement range. The numerical results demonstrated the noticeable accuracy advantages of the proposed EMF model.

References

1.
Keogh
,
P.
, and
Cole
,
M. O. T.
,
2009
, “
Dynamics and Control Issues for Fault Tolerance
,”
Magnetic Bearings
,
G.
Schweitzer
, and
E. H.
Maslen
, eds., Springer-Verlag Berlin and Heidelberg GmbH & Co. K, Switzerland, pp.
407
433
.10.1007/978-3-642-00497-1_14
2.
Cheng
,
X.
,
Zhang
,
L.
,
Zhou
,
R.
,
Song
,
S.
,
Wang
,
B.
, and
Liu
,
H.
,
2017
, “
Analysis of Output Precision Characteristics of Digital Switching Power Amplifier in Active Magnetic Bearing System
,”
Automatika
,
58
(
2
), pp.
205
215
.10.1080/00051144.2017.1390194
3.
Park
,
Y.
,
2014
, “
Design and Implementation of an Electromagnetic Levitation System for Active Magnetic Bearing Wheels
,”
IET Control Theory A
,
8
(
2
), pp.
139
148
.10.1049/iet-cta.2013.0450
4.
Ren
,
Y.
, and
Fang
,
J.
,
2014
, “
High-Precision and Strong-Robustness Control for an MSCMG Based on Modal Separation and Rotation Motion Decoupling Strategy
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1539
1551
.10.1109/TIE.2013.2257147
5.
Cheng
,
X.
,
Wang
,
B.
,
Chen
,
Q.
,
Zhang
,
L.
,
Liu
,
H.
, and
Song
,
S.
,
2017
, “
A Unified Design and the Current Ripple Characteristic Analysis of Digital Switching Power Amplifier in Active Magnetic-Levitated Bearings
,”
Int. J. Appl. Electromagn. Mech.
,
55
(
3
), pp.
391
407
.10.3233/JAE-170033
6.
Allaire
,
P. E.
,
Fittro
,
R. L.
,
Maslen
,
E. H.
, and
Wakefield
,
W. C.
,
1997
, “
Measured Force/Current Relations in Solid Magnetic Thrust Bearings
,”
ASME J. Eng. Gas Turbines Power
,
119
(
1
), pp.
137
142
.10.1115/1.2815537
7.
Maslen
,
E. H.
, and
Meeker
,
D. C.
,
1995
, “
Fault Tolerance of Magnetic Bearings by Generalized Bias Current Linearization
,”
IEEE Trans. Magn.
,
31
(
3
), pp.
2304
2314
.10.1109/20.376229
8.
Meeker
,
D. C.
,
1996
, “
Optimal Solutions to the Inverse Problem in Quadratic Magnetic Actuators
,”
Ph.D. dissertation
, University of Virginia, Charlottesville, VA.http://www.femm.info/dmeeker/pdf/cnd.pdf
9.
Maslen
,
E. H.
,
Sortore
,
C. K.
,
Gillies
,
G. T.
,
Williams
,
R. D.
,
Fedigan
,
S. J.
, and
Aimone
,
R. J.
,
1999
, “
Fault Tolerant Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
121
(
3
), pp.
504
508
.10.1115/1.2818501
10.
Na
,
U. J.
, and
Palazzolo
,
A. B.
,
2000
, “
Optimized Realization of Fault-Tolerant Heteropolar Magnetic Bearings
,”
ASME J. Vib. Acoust.
,
122
(
3
), pp.
209
221
.10.1115/1.1303072
11.
Na
,
U. J.
,
Palazzolo
,
A. B.
, and
Provenza
,
A.
,
2002
, “
Test and Theory Correlation Study for a Flexible Rotor on Fault-Tolerant Magnetic Bearings
,”
ASME J. Vib. Acoust.
,
124
(
3
), pp.
359
366
.10.1115/1.1467652
12.
Noh
,
M. D.
,
Cho
,
S.-R.
,
Kyung
,
J.-H.
,
Ro
,
S.-K.
, and
Park
,
J.-K.
,
2005
, “
Design and Implementation of a Fault-Tolerant Magnetic Bearing System for Turbo-Molecular Vacuum Pump
,”
IEEE-ASME Trans. Mechatronics
,
10
(
6
), pp.
626
631
.10.1109/TMECH.2005.859830
13.
Na
,
U. J.
, and
Palazzolo
,
A. B.
,
2001
, “
The Fault-Tolerant Control of Magnetic Bearings With Reduced Controller Outputs
,”
ASME J. Dyn. Sys. Meas. Control
,
123
(
2
), pp.
219
224
.10.1115/1.1369356
14.
Meeker
,
D. C.
,
Maslen
,
E. H.
,
1996
,
M. D.
, and
Noh
, “
An Augmented Circuit Model for Magnetic Bearings Including Eddy Currents, Fringing and Leakage
,”
IEEE Trans. Magn.
,
32
(
4
), pp.
3219
3227
.10.1109/20.508385
15.
Na
,
U. J.
, and
Palazzolo
,
A. B.
,
2000
, “
Fault Tolerance of Magnetic Bearings With Material Path Reluctances and Fringing Factors
,”
IEEE Trans. Magn.
,
36
, pp.
3939
3946
.10.1109/20.914343
16.
Meeker
,
D. C.
,
Filatov
,
A. V.
, and
Maslen
,
E. H.
,
2004
, “
Effect of Magnetic Hysteresis on Rotational Losses in Heteropolar Magnetic Bearings
,”
IEEE Trans. Magn.
,
40
(
5
), pp.
3302
3307
.10.1109/TMAG.2004.831664
17.
Kasarda
,
M. E. F.
,
Allaire
,
P. E.
,
Norris
,
P. M.
,
Mastrangelo
,
C.
, and
Maslen
,
E. H.
,
1999
, “
Experimentally Determined Rotor Power Losses in Homopolar and Heteropolar Magnetic Bearings
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
697
702
.10.1115/1.2818529
18.
Sortore
,
C. K.
,
Allaire
,
P. E.
,
Maslen
,
E. H.
, and Humphris, R. R.,
1990
, “
Permanent Magnet Biased Magnetic Bearings—Design, Construction and Testing
,”
Proceedings of the Second International Symposium on Magnetic Bearings
,
Tokyo, Japan
, July 12–14, pp.
175
182
.
19.
Allaire
,
P. E.
,
Maslen
,
E. H.
,
Humphris
,
R. R.
, Sortore, C. K., and Studer, P. A.,
1992
, “
Low Power Magnetic Bearing Design for High Speed Rotating Machinery
,”
Proceedings of the NASA International Symposium on Magnetic Suspension Technology
, Charlottesville, VA, May 1, pp.
317
329
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920018496.pdf
20.
Maslen
,
E. H.
,
Allaire
,
P. E.
,
Noh
,
M. D.
, and
Sortore
,
C. K.
,
1996
, “
Magnetic Bearing Design for Reduced Power Consumption
,”
ASME J. Tribol.
,
118
(
4
), pp.
839
846
.10.1115/1.2831617
21.
Lee
,
A. C.
,
Hsiao
,
F. Z.
, and
Ko
,
D.
,
1994
, “
Analysis and Testing of a Magnetic Bearing With Permanent Magnets for Bias
,”
JSME Int. J. Ser. C
,
37
, pp.
774
782
.10.1299/jsmec1993.37.774
22.
Lee
,
A. C.
,
Hsiao
,
F. Z.
, and
Ko
,
D.
,
1994
, “
Performance Limits of Permanent-Magnet-Biased Magnetic Bearings
,”
JSME Int. J. Ser. C
,
37
, pp.
783
794
.10.1299/jsmec1993.37.783
23.
Fan
,
Y.
,
Lee
,
A.
, and
Hsiao
,
F.
,
1997
, “
Design of a Permanent/Electromagnetic Magnetic Bearing-Controlled Rotor System
,”
J. Frankl. Inst.
,
334
(
3
), pp.
337
356
.10.1016/S0016-0032(96)00101-9
24.
Na
,
U. J.
,
2004
, “
Fault Tolerance of Homopolar Magnetic Bearings
,”
J. Sound Vib.
,
272
(
3–5
), pp.
495
511
.10.1016/S0022-460X(03)00379-1
25.
Won
,
J. S.
, and
Na
,
U. J.
,
2006
, “
Design of Flux Invariant, Fault Tolerant Homopolar Magnetic Bearings
,”
SICI-ICASE International Joint Conference
,
Busan, Korea
, Oct. 18–21, pp.
3470
3473
.10.1109/SICE.2006.315166
26.
Li
,
M.-H.
,
Palazzolo
,
A. B.
,
Kenny
,
A.
,
Provenza
,
A. J.
,
Beach
,
R. F.
, and
Kascak
,
A. F.
,
2004
, “
Fault Tolerant Homopolar Magnetic Bearings
,”
IEEE Trans. Magn.
,
40
(
5
), pp.
3308
3318
.10.1109/TMAG.2004.833428
27.
Phi Nguyen
,
N.
, and
Hong
,
S. K.
,
2018
, “
Sliding Mode Thau Observer for Actuator Fault Diagnosis of Quadcopter UAVs
,”
Appl. Sci.
,
8
(
10
), p.
1893
.10.3390/app8101893
28.
Nguyen
,
N.
, and
Hong
,
S.
,
2019
, “
Fault Diagnosis and Fault-Tolerant Control Scheme for Quadcopter UAVs With a Total Loss of Actuator
,”
Energies
,
12
(
6
), p.
1139
.10.3390/en12061139
29.
Glowacz
,
A.
,
2018
, “
Recognition of Acoustic Signals of Commutator Motors
,”
Appl. Sci.
,
8
(
12
), p.
2630
.10.3390/app8122630
30.
Shahnazari
,
H.
, and
Mhaskar
,
P.
,
2018
, “
Actuator and Sensor Fault Detection and Isolation for Nonlinear Systems Subject to Uncertainty
,”
Int. J. Robust Nonlinear Control
,
28
(
6
), pp.
1996
2013
.10.1002/rnc.3996
31.
Zhao
,
K.
,
Li
,
P.
,
Zhang
,
C.
,
Li
,
X.
,
He
,
J.
, and
Lin
,
Y.
,
2017
, “
Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System
,”
Sensors
,
17
(
12
), p.
2833
.10.3390/s17122833
32.
Yan
,
X.
,
Sun
,
Z.
,
Zhao
,
J.
,
Shi
,
Z.
, and
Zhang
,
C.-A.
,
2019
, “
Fault Diagnosis of Active Magnetic Bearing–Rotor System Via Vibration Images
,”
Sensors
,
19
(
2
), p.
244
.10.3390/s19020244
33.
Cole
,
M. O. T.
,
Keogh
,
P. S.
,
Sahinkaya
,
M. N.
, and
Burrows
,
C. R.
,
2004
, “
Towards Fault-Tolerant Active Control of Rotor-Magnetic Bearing Systems
,”
Control Eng. Pract.
,
12
(
4
), pp.
491
501
.10.1016/S0967-0661(03)00173-4
34.
Na
,
U. J.
,
2005
, “
Fault Tolerant Control of Magnetic Bearings With Force Invariance
,”
KSME J. Mech. Sci. Technol.
,
19
(
3
), pp.
731
742
.10.1007/BF02916122
35.
Na
,
U. J.
,
2006
, “
Fault Tolerant Homopolar Magnetic Bearings With Flux Invariant Control
,”
KSME J. Mech. Sci. Technol.
,
20
(
5
), pp.
643
651
.10.1007/BF02915981
36.
Agarwal
,
P. K.
, and
Chand
,
S.
,
2009
, “
Fault Tolerant Control of Three-Pole Active Magnetic Bearing
,”
Expert Syst. Appl.
,
36
(
10
), pp.
12592
12604
.10.1016/j.eswa.2009.05.052
37.
Cheng
,
X.
,
Chen
,
Q.
,
Zeng
,
H.
,
Wang
,
X.
, and
Zhou
,
R.
,
2016
, “
Reconfiguration Rules for Loosely-Coupled Redundant Supporting Structure in Radial Magnetic Bearings
,”
Int. J. Appl. Electromagn. Mech.
,
51
(
2
), pp.
91
106
.10.3233/JAE-150103
38.
Cheng
,
X.
,
Liu
,
H.
,
Song
,
S.
,
Hu
,
Y.
,
Wang
,
B.
, and
Li
,
Y.
,
2017
, “
Reconfiguration of Tightly-Coupled Redundant Supporting Structure in Active Magnetic Bearings Under the Failures of Electromagnetic Actuators
,”
Int. J. Appl. Electromagn. Mech.
,
54
(
3
), pp.
421
432
.10.3233/JAE-160113
39.
Meeker
,
D.
,
2017
, “
A Generalized Unbiased Control Strategy for Radial Magnetic Beatings
,”
Actuators
,
6
(
1
), p.
1
.10.3390/act6010001
You do not currently have access to this content.