Abstract

Ceramic matrix composites are an enabling propulsion material system that offer weight benefits over current Ni-based superalloys, and have higher temperature capabilities that can reduce cooling requirements. Incorporating ceramic matrix composites into the hot section of gas-turbine engines therefore leads to an increase in engine efficiency. While significant advancements have been made, challenges still remain for current and next-generation gas turbines; particularly when operating in dust laden or erosive environments. Solid particles entrained in the gas flow can impact engine hardware resulting in localized damage and material removal due to repeated, cumulative impacts. In this study, the erosion behavior of a melt-infiltrated (MI) silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composite is investigated at high temperature (1200 °C) in a simulated combustion environment using 150 μm alumina particles as erodent. Particle impact velocities ranged from 100 to 200 m/s and the angle of impingement varied from 30 to 90 deg. Erosion testing was also performed on α-SiC to elucidate similarities and differences in the erosion response of the composite compared to that of a monolithic ceramic. Scanning electron microscopy was used to study the posterosion damage morphology and the governing mechanisms of material removal.

References

1.
Zok
,
F.
,
2016
, “
Ceramic-Matrix Composites Enable Revolutionary Gains in Turbine Engine Efficiency
,”
Am. Ceram. Soc. Bull.
,
95
(
5
), pp.
22
28
.https://bulletinarchive.ceramics.org/2016-06/
2.
Kedir
,
N.
,
Gong
,
C.
,
Sanchez
,
L.
,
Presby
,
M. J.
,
Kane
,
S.
,
Faucett
,
D. C.
, and
Choi
,
S. R.
,
2019
, “
Erosion in Gas-Turbine Grade Ceramic Matrix Composites
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011019
.10.1115/1.4040848
3.
Presby
,
M. J.
,
Gong
,
C.
,
Kane
,
S.
,
Kedir
,
N.
,
Stanley
,
A.
,
Faucett
,
D. C.
, and
Choi
,
S. R.
,
2020
, “
Erosion in a Melt-Infiltrated SiC/SiC Ceramic Matrix Composite
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p. 041009.10.1115/1.4044900
4.
Presby
,
M. J.
,
Kedir
,
N.
,
Sanchez
,
L. J.
,
Gong
,
C.
,
Faucett
,
D. C.
,
Choi
,
S. R.
, and
Morscher
,
G. N.
,
2019
, “
Erosion Behavior in a Gas Turbine Grade Oxide/Oxide Ceramic Matrix Composite
,”
Proceedings of the 42nd International Conference on Advanced Ceramics and Composites: Ceramic Engineering and Science Proceedings
, Vol. 39, Issue 2, Daytona Beach, FL, Jan. 21–26, pp.
15
26
.10.1002/9781119543343.ch2
5.
Kuczmarski
,
M. A.
,
Miller
,
R. A.
, and
Zhu
,
D.
,
2011
, “
CFD-Guided Development of Test Rigs for Studying Erosion and Large-Particle Damage of Thermal Barrier Coatings
,”
Modell. Simul. Eng.
,
2011
, pp.
1
13
.10.1155/2011/837921
6.
Miller
,
R.
, and
Kuczmarski
,
M.
,
2014
, “
Burner Rig for Small Particle Erosion Testing of Thermal Barrier Coatings
,”
J. Test. Eval.
,
42
(
3
), pp.
648
658
.10.1520/JTE20120303
7.
Miller
,
R. A.
,
Kuczmarski
,
M. A.
, and
Zhu
,
D.
,
2011
, “
Burner Rig With an Unattached Duct for Evaluating the Erosion Resistance of Thermal Barrier Coatings
,” NASA, Washington, DC, Report No.
NASA/TM – 2011-217008.
8.
Fox
,
D. S.
,
Miller
,
R. A.
,
Zhu
,
D.
,
Perez
,
M.
,
Cuy
,
M. D.
, and
Robinson
,
R. C.
,
2011
, “
Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory
,” NASA, Washington, DC, Report No.
NASA/TM – 2011-216986.
9.
Bruce
,
R. W.
,
1998
, “
Development of 1232 °C (2250 °F) Erosion and Impact Tests for Thermal Barrier Coatings
,”
Tribol. Trans.
,
41
(
4
), pp.
399
410
.10.1080/10402009808983765
10.
Ruff
,
A. W.
, and
Ives
,
L. K.
,
1975
, “
Measurement of Solid Particle Velocity in Erosive Wear
,”
Wear
,
35
(
1
), pp.
195
199
.10.1016/0043-1648(75)90154-4
11.
Stevenson
,
A.
, and
Hutchings
,
I.
,
1995
, “
Scaling Laws for Particle Velocity in the Gas-Blast Erosion Test
,”
Wear
,
181–183
, pp.
56
62
.10.1016/0043-1648(95)90008-X
12.
Wiederhorn
,
S. M.
, and
Hockey
,
B. J.
,
1983
, “
Effect of Material Parameters on the Erosion Resistance of Brittle Materials
,”
J. Mater. Sci.
,
18
(
3
), pp.
766
780
.10.1007/BF00745575
13.
Routbort
,
J. L.
,
Scattergood
,
R. O.
, and
Turner
,
A. P. L.
,
1980
, “
Erosion of Reaction-Bonded SiC
,”
Wear
,
59
(
2
), pp.
363
375
.10.1016/0043-1648(80)90194-5
14.
Sharma
,
S. K.
,
Kumar
,
B. V. M.
,
Lim
,
K.-Y.
,
Kim
,
Y.-W.
, and
Nath
,
S. K.
,
2014
, “
Erosion Behavior of SiC-WC Composites
,”
Ceram. Int.
,
40
(
5
), pp.
6829
6839
.10.1016/j.ceramint.2013.11.146
15.
Scattergood
,
R. O.
, and
Routbort
,
J. L.
,
1981
, “
Velocity and Size Dependences of the Erosion Rate in Silicon
,”
Wear
,
67
(
2
), pp.
227
232
.10.1016/0043-1648(81)90106-X
16.
Marshall
,
D. B.
,
Lawn
,
B. R.
, and
Evans
,
A. G.
,
1982
, “
Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System
,”
J. Am. Ceram. Soc.
,
65
(
11
), pp.
561
566
.10.1111/j.1151-2916.1982.tb10782.x
17.
Wiederhorn
,
S. M.
, and
Lawn
,
B. R.
,
1979
, “
Strength Degradation of Glass Impacted With Sharp Particles: I, Annealed Surfaces
,”
J. Am. Ceram. Soc.
,
62
(
1–2
), pp.
66
70
.10.1111/j.1151-2916.1979.tb18808.x
18.
Evans
,
A. G.
,
Gulden
,
M. E.
, and
Rosenblatt
,
M.
,
1978
, “
Impact Damage in Brittle Materials in the Elastic-Plastic Repsonse Regime
,”
Proc. R. Soc. London. Ser. A
,
361
, pp.
343
365
.10.1098/rspa.1978.0106
19.
Srinivasan
,
S.
, and
Scattergood
,
R. O.
,
1991
, “
R-Curve Effects in Solid Particle Erosion of Ceramics
,”
Wear
,
142
(
1
), pp.
115
133
.10.1016/0043-1648(91)90156-O
20.
Hockey
,
B. J.
,
Wiederhorn
,
S. M.
, and
Johnson
,
H.
,
1978
, “
Erosion of Brittle Materials by Solid Particle Impact
,”
Flaws and Testing. Fracture Mechanics of Ceramics
,
R. C.
Bradt
,
D. P. H.
Hasselman
, and
F. F.
Lange
, eds., Vol. 3,
Springer
,
Boston, MA
.
21.
Zhou
,
J.
, and
Bahadur
,
S.
,
1995
, “
Erosion Characteristics of Alumina Ceramics at High Temperatures
,”
Wear
,
181-183
(
1
), pp.
178
188
.10.1016/0043-1648(94)07047-4
22.
Wellman
,
R. G.
, and
Allen
,
C.
,
1995
, “
The Effects of Angle of Impact and Materials Properties on the Erosion Rates of Ceramics
,”
Wear
,
186–187
, pp.
117
122
.10.1016/0043-1648(95)07130-X
23.
Barkoula
,
N. M.
, and
Karger-Kocsis
,
J.
,
2002
, “
Solid Particle Erosion of Unidirectional GF Reinforced EP Composites With Different Fiber/Matrix Adhesion
,”
J. Reinf. Plast. Compos.
,
21
(
15
), pp.
1377
1388
.10.1177/0731684402021015779
24.
Tewari
,
U. S.
,
Harsha
,
A. P.
,
Hager
,
A. M.
, and
Friedrich
,
K.
,
2003
, “
Solid Particle Erosion of Carbon Fibre-and Glass Fibre-Epoxy Composites
,”
Compos. Sci. Technol.
,
63
(
3–4
), pp.
549
557
.10.1016/S0266-3538(02)00210-5
25.
Patnaik
,
A.
,
Satapathy
,
A.
,
Chand
,
N.
,
Barkoula
,
N. M.
, and
Biswas
,
S.
,
2010
, “
Solid Particle Erosion Wear Characteristics of Fiber and Particulate Filled Polymer Composites: A Review
,”
Wear
,
268
(
1–2
), pp.
249
263
.10.1016/j.wear.2009.07.021
You do not currently have access to this content.