Abstract

Waste heat recovery (WHR) is expected to contribute to reducing CO2 emissions from trucks. Organic Rankine cycle (ORC) systems show the highest potential for this application, but still lack efficient small-scale expansion devices, in practice. A novel turbogenerator (TG) supported on gas-lubricated bearings is presented in this paper. The device combines a single-stage radial-inflow turbine and a permanent-magnet machine in a single rotating part supported on aerodynamic bearings, lubricated with the working fluid (R245fa). The oil-free expander was tested within a dedicated ORC test setup. It was driven up to its nominal speed of 100 krpm, generated up to 2.3 kW of electrical power, and reached a peak overall efficiency of 67%. Although the prototype was not actively cooled, the mechanical losses of the rotor shaft and the iron loss of the electrical machine reached their nominal levels. Only the copper loss was at a part-load level. The electromechanical efficiency of the TG reached 91% and is expected to increase while testing the device at higher load. This proof of concept confirms the high-speed and low-loss potential of gas-lubricated bearings for small-scale dynamic expanders.

References

1.
European Commission
,
2019
, “
Regulation (EU) 2019/1242 of the European Parliament and of the Council of 20 June 2019 Setting CO2 Emission Performance Standards for New Heavy-Duty Vehicles and Amending Regulations (EC) No 595/2009 and (EU) 2018/956 of the European Parliament and of the Council and Council Directive 96/53/EC
,” European Commission, Brussels, Belgium, Document No.
32019R1242
http://data.europa.eu/eli/reg/2019/1242/oj.
2.
ICCT,
2017
, “
Fuel Efficiency Technology in European Heavy-Duty Vehicles: Baseline and Potential for the 2020-2030 Time Frame
,” International Council on Clean Transportation, Berlin, Germany.https://theicct.org/publications/fuel-efficiency-technology-european-heavy-duty-vehicles-baseline-and-potential-2020
3.
Colonna
,
P.
,
Casati
,
E.
,
Trapp
,
C.
,
Mathijssen
,
T.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
, and
Uusitalo
,
A.
,
2015
, “
Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
100801
.10.1115/1.4029884
4.
Sprouse
,
C.
, III.
, and
Depcik
,
C.
,
2013
, “
Review of Organic Rankine Cycles for Internal Combustion Engine Exhaust Waste Heat Recovery
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
711
722
.10.1016/j.applthermaleng.2012.10.017
5.
Imran
,
M.
,
Usman
,
M.
,
Park
,
B.-S.
, and
Lee
,
D.-H.
,
2016
, “
Volumetric Expanders for Low Grade Heat and Waste Heat Recovery Applications
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
1090
1109
.10.1016/j.rser.2015.12.139
6.
Wu
,
Z.
,
Pan
,
D.
,
Gao
,
N.
,
Zhu
,
T.
, and
Xie
,
F.
,
2015
, “
Experimental Testing and Numerical Simulation of Scroll Expander in a Small Scale Organic Rankine Cycle System
,”
Appl. Therm. Eng.
,
87
, pp.
529
537
.10.1016/j.applthermaleng.2015.05.040
7.
Tang
,
H.
,
Wu
,
H.
,
Wang
,
X.
, and
Xing
,
Z.
,
2015
, “
Performance Study of a Twin-Screw Expander Used in a Geothermal Organic Rankine Cycle Power Generator
,”
Energy
,
90
, pp.
631
642
.10.1016/j.energy.2015.07.093
8.
Galindo
,
J.
,
Ruiz
,
S.
,
Dolz
,
V.
,
Royo-Pascual
,
L.
,
Haller
,
R.
,
Nicolas
,
B.
, and
Glavatskaya
,
Y.
,
2015
, “
Experimental and Thermodynamic Analysis of a Bottoming Organic Rankine Cycle (ORC) of Gasoline Engine Using Swash-Plate Expander
,”
Energy Convers. Manage.
,
103
, pp.
519
532
.10.1016/j.enconman.2015.06.085
9.
Cipollone
,
R.
,
Bianchi
,
G.
,
Di Battista
,
D.
,
Contaldi
,
G.
, and
Murgia
,
S.
,
2014
, “
Mechanical Energy Recovery From Low Grade Thermal Energy Sources
,”
Energy Procedia
,
45
, pp.
121
130
.10.1016/j.egypro.2014.01.014
10.
Cipollone
,
R.
,
Bianchi
,
G.
,
Gualtieri
,
A.
,
Battista
,
D. D.
,
Mauriello
,
M.
, and
Fatigati
,
F.
,
2015
, “
Development of an Organic Rankine Cycle System for Exhaust Energy Recovery in Internal Combustion Engines
,”
J. Phys.: Conf. Ser.
,
655
(
1
), p.
012015
.10.1088/1742-6596/655/1/012015
11.
Di Battista
,
D.
,
Mauriello
,
M.
, and
Cipollone
,
R.
,
2015
, “
Waste Heat Recovery of an ORC-Based Power Unit in a Turbocharged Diesel Engine Propelling a Light Duty Vehicle
,”
Appl. Energy
,
152
(
Suppl. C
), pp.
109
120
.10.1016/j.apenergy.2015.04.088
12.
Olmedo
,
L. E.
,
Mounier
,
V.
,
Mendoza
,
L. C.
, and
Schiffmann
,
J.
,
2018
, “
Dimensionless Correlations and Performance Maps of Scroll Expanders for Micro-Scale Organic Rankine Cycles
,”
Energy
,
156
, pp.
520
533
.10.1016/j.energy.2018.05.001
13.
Youbi-Idrissi
,
M.
, and
Bonjour
,
J.
,
2008
, “
The Effect of Oil in Refrigeration: Current Research Issues and Critical Review of Thermodynamic Aspects
,”
Int. J. Refrig.
,
31
(
2
), pp.
165
179
.10.1016/j.ijrefrig.2007.09.006
14.
Lemort
,
V.
,
Declaye
,
S.
, and
Quoilin
,
S.
,
2012
, “
Experimental Characterization of a Hermetic Scroll Expander for Use in a Micro-Scale Rankine Cycle
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
1
), pp.
126
136
.10.1177/0957650911413840
15.
Mendoza
,
L. C.
,
Navarro-Esbrí
,
J.
,
Bruno
,
J. C.
,
Lemort
,
V.
, and
Coronas
,
A.
,
2014
, “
Characterization and Modeling of a Scroll Expander With Air and Ammonia as Working Fluid
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
630
640
.10.1016/j.applthermaleng.2014.05.069
16.
Bao
,
J.
, and
Zhao
,
L.
,
2013
, “
A Review of Working Fluid and Expander Selections for Organic Rankine Cycle
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
325
342
.10.1016/j.rser.2013.03.040
17.
Mounier
,
V.
,
Mendoza
,
L. C.
, and
Schiffmann
,
J.
,
2017
, “
Thermo-Economic Optimization of an ORC Driven Heat Pump Based on Small Scale Turbomachinery and Comparison With Absorption Heat Pumps
,”
Int. J. Refrig.
,
81
, pp.
96
110
.10.1016/j.ijrefrig.2017.05.021
18.
Rosset
,
K.
,
Mounier
,
V.
,
Guenat
,
E.
, and
Schiffmann
,
J.
,
2018
, “
Multi-Objective Optimization of Turbo-ORC Systems for Waste Heat Recovery on Passenger Car Engines
,”
Energy
,
159
, pp.
751
765
.10.1016/j.energy.2018.06.193
19.
Bahamonde
,
S.
,
Pini
,
M.
,
De Servi
,
C.
,
Rubino
,
A.
, and
Colonna
,
P.
,
2017
, “
Method for the Preliminary Fluid Dynamic Design of High-Temperature Mini-Organic Rankine Cycle Turbines
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082606
.10.1115/1.4035841
20.
Kunte
,
H.
, and
Seume
,
J.
,
2013
, “
Partial Admission Impulse Turbine for Automotive ORC Application
,”
SAE
Paper No. 2013-24-0092.10.4271/2013-24-0092
21.
Freymann
,
R.
,
Ringler
,
J.
,
Seifert
,
M.
, and
Horst
,
T.
,
2012
, “
The Second Generation Turbosteamer
,”
MTZ Worldwide
,
73
(
2
), pp.
18
23
.10.1365/s38313-012-0138-1
22.
Seume
,
J. R.
,
Peters
,
M.
, and
Kunte
,
H.
,
2017
, “
Design and Test of a 10 kW ORC Supersonic Turbine Generator
,”
J. Phys.: Conf. Ser.
,
821
(
1
), p.
012023
.10.1088/1742-6596/821/1/012023
23.
Di Battista
,
D.
, and
Cipollone
,
R.
,
2017
, “
Experimental Analysis of an Organic Rankine Cycle Plant Bottoming a Heavy-Duty Engine Using Axial Turbine as Prime Mover
,”
SAE Int. J. Engines
,
10
(
4
), pp.
1385
1397
.10.4271/2017-01-9279
24.
Dumont
,
O.
,
2018
, “
Experimental Investigation and Modelling of a 1.5 KW Axial Turbine for Waste Heat Recovery of a Gasoline Passenger Car Through a Rankine Cycle
,”
SAE
Paper No. 2018-37-0007.10.4271/2018-37-0007
25.
Pini
,
M.
,
De Servi
,
C.
,
Burigana
,
M.
,
Bahamonde
,
S.
,
Rubino
,
A.
,
Vitale
,
S.
, and
Colonna
,
P.
,
2017
, “
Fluid-Dynamic Design and Characterization of a Mini-ORC Turbine for Laboratory Experiments
,”
Energy Procedia
,
129
(
Suppl. C
), pp.
1141
1148
.10.1016/j.egypro.2017.09.186
26.
Lang
,
W.
,
Colonna
,
P.
, and
Almbauer
,
R.
,
2013
, “
Assessment of Waste Heat Recovery From a Heavy-Duty Truck Engine by Means of an ORC Turbogenerator
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042313
.10.1115/1.4023123
27.
Costall
,
A. W.
,
Gonzalez Hernandez
,
A.
,
Newton
,
P. J.
, and
Martinez-Botas
,
R. F.
,
2015
, “
Design Methodology for Radial Turbo Expanders in Mobile Organic Rankine Cycle Applications
,”
Appl. Energy
,
157
, pp.
729
743
.10.1016/j.apenergy.2015.02.072
28.
Uusitalo
,
A.
,
Turunen-Saaresti
,
T.
,
Honkatukia
,
J.
,
Colonna
,
P.
, and
Larjola
,
J.
,
2013
, “
Siloxanes as Working Fluids for Mini-ORC Systems Based on High-Speed Turbogenerator Technology
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042305
.10.1115/1.4023115
29.
Turunen-Saaresti
,
T.
,
Uusitalo
,
A.
, and
Honkatukia
,
J.
,
2017
, “
Design and Testing of High Temperature Micro-ORC Test Stand Using Siloxane as Working Fluid
,”
J. Phys.: Conf. Ser.
,
821
, p.
012024
.10.1088/1742-6596/821/1/012024
30.
Uusitalo
,
A.
,
Turunen-Saaresti
,
T.
,
Honkatukia
,
J.
, and
Dhanasegaran
,
R.
,
2020
, “
Experimental Study of Small Scale and High Expansion Ratio ORC for Recovering High Temperature Waste Heat
,”
Energy
,
208
, p.
118321
.10.1016/j.energy.2020.118321
31.
Alshammari
,
F.
,
Pesyridis
,
A.
,
Karvountzis-Kontakiotis
,
A.
,
Franchetti
,
B.
, and
Pesmazoglou
,
Y.
,
2018
, “
Experimental Study of a Small Scale Organic Rankine Cycle Waste Heat Recovery System for a Heavy Duty Diesel Engine With Focus on the Radial Inflow Turbine Expander Performance
,”
Appl. Energy
,
215
, pp.
543
555
.10.1016/j.apenergy.2018.01.049
32.
Guillaume
,
L.
,
Legros
,
A.
,
Desideri
,
A.
, and
Lemort
,
V.
,
2017
, “
Performance of a Radial-Inflow Turbine Integrated in an ORC System and Designed for a WHR on Truck Application: An Experimental Comparison Between R245fa and R1233zd
,”
Appl. Energy
,
186
(
Part 3
), pp.
408
422
.10.1016/j.apenergy.2016.03.012
33.
Demierre
,
J.
,
Favrat
,
D.
,
Schiffmann
,
J.
, and
Wegele
,
J.
,
2014
, “
Experimental Investigation of a Thermally Driven Heat Pump Based on a Double Organic Rankine Cycle and an Oil-Free Compressor-Turbine Unit
,”
Int. J. Refrig.
,
44
, pp.
91
100
.10.1016/j.ijrefrig.2014.04.024
34.
Demierre
,
J.
,
Rubino
,
A.
, and
Schiffmann
,
J.
,
2014
, “
Modeling and Experimental Investigation of an Oil-Free Microcompressor-Turbine Unit for an Organic Rankine Cycle Driven Heat Pump
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032602
.10.1115/1.4028391
35.
Schiffmann
,
J.
,
2008
, “
Integrated Design, Optimization and Experimental Investigation of a Direct Driven Turbocompressor for Domestic Heat Pumps
,”
Ph.D. thesis
,
Ecole Polytechnique Fédérale de Lausanne
,
Lausanne, Switzerland
.10.5075/epfl-thesis-4126
36.
Shalash
,
K.
, and
Schiffmann
,
J.
,
2017
, “
On the Manufacturing of Compliant Foil Bearings
,”
J. Manuf. Processes
,
25
, pp.
357
368
.10.1016/j.jmapro.2016.12.021
37.
Schiffmann
,
J.
,
Kontomaris
,
K.
,
Arpagaus
,
C.
,
Bless
,
F.
, and
Bertsch
,
S.
,
2020
, “
Scale Limitations of Gas Bearing Supported Turbocompressors for Vapor Compression Cycles
,”
Int. J. Refrig.
,
109
, pp.
92
104
.10.1016/j.ijrefrig.2019.09.019
38.
Guenat
,
E.
, and
Schiffmann
,
J.
,
2019
, “
Multi-Objective Optimization of Grooved Gas Journal Bearings for Robustness in Manufacturing Tolerances
,”
Tribol. Trans.
,
62
(
6
), pp.
1041
1050
.10.1080/10402004.2019.1642547
39.
Bättig
,
P.
, and
Schiffmann
,
J.
,
2019
, “
Data-Driven Model for the Dynamic Characteristics of O-Rings for Gas Bearing Supported Rotors
,”
ASME J. Appl. Mech.
,
86
(
8
), p.
081003
.10.1115/1.4043473
40.
Bättig
,
P.
, and
Schiffmann
,
J.
,
2020
, “
Flexible Support for Gas Lubricated Bearing Bushings
,”
Tribol. Trans.
,
63
(
3
), p.
494
.10.1080/10402004.2020.1717702
41.
Marlok
,
H.
,
Pfeifer
,
A.
,
Hötger
,
M.
, and
Bucher
,
M.
,
2019
, “
Modular Waste Heat Recovery System With Electric Power Output
,”
MTZ Worldwide
,
80
(
11
), pp.
78
83
.10.1007/s38313-019-0129-6
42.
Zwyssig
,
C.
,
Round
,
S. D.
, and
Kolar
,
J. W.
,
2008
, “
An Ultrahigh-Speed, Low Power Electrical Drive System
,”
IEEE Trans. Ind. Electron.
,
55
(
2
), pp.
577
585
.10.1109/TIE.2007.911950
43.
Rosset
,
K.
, and
Schiffmann
,
J.
,
2020
, “
Extended Windage Loss Models for Gas Bearing Supported Spindles Operated in Dense Gases
,”
ASME J. Eng. Gas Turbines Power
,
142
(
6
), p.
061010
.10.1115/1.4047124
44.
Gu
,
L.
,
Guenat
,
E.
, and
Schiffmann
,
J.
,
2020
, “
A Review of Grooved Dynamic Gas Bearings
,”
ASME Appl. Mech. Rev.
,
72
(
1
), p.
010802
.10.1115/1.4044191
45.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0,” National Institute of Standards and Technology
, Gaithersburg, MD.
46.
Ledinegg
,
M.
,
1938
, “
Instability of Flow During Natural and Forced Circulation
,”
Die Wärme
,
61
(
8
), pp.
891
898
.https://www.osti.gov/etdeweb/biblio/4845859
You do not currently have access to this content.