Abstract

A general fatigue life equation is derived by modifying the Tanaka-Mura-Wu dislocation pile-up model for variable strain-amplitude fatigue processes, where the fatigue crack nucleation life is expressed in terms of the root-mean-square of plastic strain range. Low-cycle fatigue tests were conducted on an austenitic stainless steel. At 400 °C and 600 °C, the material exhibits continuously cyclic-hardening behavior. The root-mean-square of plastic strain ranges is evaluated from the experimental data for each test condition at strain rates ranging from 0.0002/s to 0.02/s. The variable-amplitude Tanaka-Mura-Wu model is found to be in good agreement with the low-cycle fatigue (LCF) data, which effectively proves Miner's rule on the stored plastic strain energy basis.

References

1.
Lee
,
Y. L.
,
Pan
,
J.
,
Hathaway
,
R.
, and
Barkey
,
M.
,
2005
,
Fatigue Testing and Analysis: Theory and Practices
,
Elsevier
,
Burlington
.
2.
Alain
,
R.
,
Violan
,
P.
, and
Mendez
,
J.
,
1997
, “
Low Cycle Fatigue Behavior in Vacuum of a 316 L Type Austenitic Stainless Steel Between 20 and 600 °C Part I: Fatigue Resistance and Cyclic Behavior
,”
Mater. Sci. Eng. A
,
229
(
1–2
), pp.
87
94
.10.1016/S0921-5093(96)10558-X
3.
Hong
,
S.-G.
,
Lee
,
S.-B.
, and
Byun
,
T.-S.
,
2007
, “
Temperature Effect on the Low-Cycle Fatigue Behavior of Type 316 L Stainless Steel: Cyclic Non-Stabilization and an Invariable Fatigue Parameter
,”
Mater. Sci. Eng. A
,
457
(
1–2
), pp.
139
147
.10.1016/j.msea.2006.12.035
4.
Wu
,
X. J.
,
Quan
,
G.
, and
Sloss
,
C.
,
2016
, “Low Cycle Fatigue of Cast Austenitic Steel,”
Fatigue and Fracture Test Planning, Test Data Acquisitions and Analysis
, Z. Wei,
K.
Nikbin
,
P.
McKeighan
, and
D.
Harlow
, eds., ASTM International, West Conshohocken, PA, pp.
37
57
.10.1520/STP159820160030
5.
Wu
,
X. J.
,
Quan
,
G.
, and
Sloss
,
C.
,
2017
, “
Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel
,”
Metall. Mater. Trans. A
,
48
(
9
), pp.
4058
4071
.10.1007/s11661-017-4160-4
6.
Tanaka
,
K.
, and
Mura
,
T.
,
1981
, “
A Dislocation Model for Fatigue Crack Initiation
,”
J. Appl. Mech
,.,
48
(
1
), pp.
97
103
.10.1115/1.3157599
7.
Wu
,
X. J.
,
2018
, “
On Tanaka-Mura's Fatigue Crack Nucleation Model and Validation
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
4
), pp.
894
899
.10.1111/ffe.12736
8.
Masing
,
G.
,
1926
, “
Eigenspannungen und Verfestigung Beim Messing
,” Proc. Second Congress for Appl. Mech., Zurich, Switzerland, pp.
332
335
.
9.
Cottrell
,
A. H.
,
1953
, “
LXXXVI. A Note on the Portevin-Le Chatelier Effect
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
44
(
355
), pp.
829
832
.10.1080/14786440808520347
10.
Wu
,
X. J.
,
2019
,
Deformation and Evolution of Life in Crystalline Materials: An Integrated Creep-Fatigue Theory
,
CRC Press
,
Boca Raton, FL
.
11.
Tyson
,
W. R.
, and
Miller
,
W. A.
,
1977
, “
Surface Free Energies of Solid Metals: Estimation From Liquid Surface Tension Measurements
,”
Surf. Sci.
,
62
(
1
), pp.
267
276
.10.1016/0039-6028(77)90442-3
You do not currently have access to this content.