Abstract

This experimental study considered the performance of a chute rim seal downstream of turbine nozzle guide vanes (but without rotor blades). The experimental setup reproduced rotationally-driven ingestion without vanes and conditions of pressure-driven ingestion with vanes. The maximum rotor speed was 9000 rpm corresponding to a rotational Reynolds number of 3.3 × 106 with a flow coefficient of 0.45. Measurements of mean pressures in the annulus and the disk rim cavity as well as values of sealing effectiveness deduced from gas concentration data are presented. At high values of flow coefficient (low rotational speeds), the circumferential pressure variation generated by the vanes drove relatively high levels of ingestion into the disk rim cavity. For a given purge flow rate, increasing the disk rotational speed led to a reduction in ingestion, shown by higher values of sealing effectiveness, despite the presence of upstream vanes. At Uax/(Ωb)=0.45, the sealing effectiveness approached that associated with purely rotationally-driven ingestion. A map of sealing effectiveness against non-dimensional purge flow summarizes the results and illustrates the combined rotational and pressure-driven effects on the ingestion mechanism. The results imply that flow coefficient is a relevant parameter in rim sealing and that rotational effects are important in many applications, especially turbines with low flow coefficient.

References

1.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
AIAA
Paper No. 94-2703.10.2514/6.1994-2703
2.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.10.1115/1.4033938
3.
Chew
,
J. W.
,
Gao
,
F.
, and
Palermo
,
D. M.
,
2019
, “
Flow Mechanisms in Axial Turbine Rim Sealing
,”
Proc. Inst. Mech. Eng. Part C J
,
233
(
23–24
), pp.
7637
7657
.10.1177/0954406218784612
4.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.10.1016/0142-727X(88)90060-4
5.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.10.1115/1.4034452
6.
Gao
,
F.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2020
, “
Inertial Waves in Turbine Rim Seal Flows
,”
Phys. Rev. Fluids
,
5
(
2
), p.
024802
.10.1103/PhysRevFluids.5.024802
7.
Bayley
,
F. J.
, and
Owen
,
J. M.
,
1970
, “
The Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant
,”
ASME J. Eng. Power
,
92
(
3
), pp.
335
341
.10.1115/1.3445358
8.
Abe
,
T.
,
Kikuchi
,
J.
, and
Takeuchi
,
H.
,
1979
, “
An Investigation of Turbine Disc Cooling (Experimental Investigation and Observation of Hot Gas Flow Into a Wheel Space)
,”
13th CIMAC Conference
, Vienna, Austria, May 7–10, Paper No. GT-30.
9.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.10.1016/0142-727X(88)90061-6
10.
Chew
,
J. W.
,
1991
, “
A Theoretical Study of Ingress for Shrouded Rotating Disc Systems With Radial Outflow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
91
97
.10.1115/1.2927742
11.
Hamabe
,
K.
, and
Ishida
,
K.
,
1992
, “
Rim Seal Experiments and Analysis of a Rotor-Stator System With Nonaxisymmetric Main Flow
,”
ASME
Paper No. 92-GT-160.10.1115/1992-GT-160
12.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.10.1115/1.2928368
13.
Bohn
,
D.
,
Johann
,
E.
, and
Krüger
,
U.
,
1995
, “
Experimental and Numerical Investigations of Aerodynamic Aspects of Hot Gas Ingestion in Rotor-Stator Systems With Superimposed Cooling Mass Flow
,”
ASME
Paper No. 95-GT-143.10.1115/95-GT-143
14.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
,
2004
, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
786
793
.10.1115/1.1772408
15.
Savov
,
S. S.
,
Atkins
,
N. R.
, and
Uchida
,
S.
,
2017
, “
A Comparison of Single and Double Lip Rim Seal Geometries
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112601
.10.1115/1.4037027
16.
Hualca
,
F. P.
,
Horwood
,
J. T. M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2020
, “
The Effect of Vanes and Blades on Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021020
.10.1115/1.4045149
17.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Lock
,
G. D.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2020
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021019
.10.1115/1.4045148
18.
Gentilhomme
,
O. J. P.
,
2004
, “
Turbine Rim Seal Ingestion
,” Ph.D. thesis,
University of Sussex
, Sussex, UK.
19.
Boudet
,
J.
,
Autef
,
V.
,
Chew
,
J.
,
Hills
,
N.
, and
Gentilhomme
,
O.
,
2005
, “
Numerical Simulation of Rim Seal Flows in Axial Turbines
,”
Aeronaut. J.
,
109
(
1098
), pp.
373
383
.10.1017/S000192400070042X
20.
Ainsworth
,
R. W.
,
Schultz
,
D. L.
,
Davies
,
M. R. D.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
,
Oldfield
,
M. L. G.
, and
Sheard
,
A. G.
,
1988
, “
A Transient Flow Facility for the Study of the Thermofluid-Dynamics of a Full Stage Turbine Under Engine Representative Flow Conditions
,”
ASME
Paper No. 88-GT-144.10.1115/1988-GT-144
21.
Bru Revert
,
A.
,
Beard
,
P. F.
,
Chew
,
J. W.
, and
Bottenheim
,
S.
,
2020
, “
Sealing Performance of a Turbine Rim Chute Seal Under Rotationally-Induced Ingestion
,” 18th ISROMAC Conference, ISROMAC, Honololu, HI, Apr. 19–23, Paper No.
2019–00161
.https://www.researchgate.net/publication/339912323_Sealing_Performance_of_a_Turbine_Rim_Chute_Seal_Under_Rotationally-Induced_Ingestion
22.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals. Part II: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.10.1115/1.4006586
23.
Palermo
,
D. M.
,
Gao
,
F.
,
Chew
,
J. W.
, and
Beard
,
P. F.
,
2019
, “
Effect of Annulus Flow Conditions on Turbine Rim Seal Ingestion
,”
ASME
Paper No. GT2019-90489.10.1115/GT2019-90489
You do not currently have access to this content.