Abstract

New ignition delay time (IDT) measurements for two natural gas (NG) blends composed of C1–C7n-alkanes, NG6 (C1:60.625%, C2:20%, C3:10%, C4:5%, nC5:2.5%, nC6:1.25%, nC7:0.625%) and NG7 (C1:72.635%, C2:10%, C3:6.667%, C4:4.444%, nC5:2.965%, nC6:1.976%, nC7:1.317%) by volume with methane as the major component are presented. The measurements were recorded using a high-pressure shock tube (HPST) for stoichiometric fuel in air mixtures at reflected shock pressures (p5) of 20–30 bar and at temperatures (T5) of 987–1420 K. The current results together with rapid compression machine (RCM) measurements in the literature show that higher concentrations of the higher n-alkanes (C4–C7) ∼1.327% in the NG7 blend compared to the NG6 blend result in the ignition times for NG7 being almost a factor of two faster than those for NG6 at compressed temperatures of (TC) ≤ 1000 K. This is due to the low temperature chain branching reactions that occur for higher alkane oxidation kinetics in this temperature range. On the contrary, at TC > 1000 K, NG6 exhibits ∼20% faster ignition than NG7, primarily because about 12% of the methane in the NG7 blend is primarily replaced by ethane (∼10%) in NG6, which is significantly more reactive than methane at these higher temperatures. The performance of NUIGMech1.2 in simulating these data is assessed, and it can reproduce the experiments within 20% for all the conditions considered in the study. We also investigate the effect of hydrogen addition to the auto-ignition of these NG blends using NUIGMech1.2, which has been validated against the existing literature for natural gas/hydrogen blends. The results demonstrate that hydrogen addition has both an inhibiting and a promoting effect in the low- and high-temperature regimes, respectively. Sensitivity analyses of the hydrogen/NG mixtures are performed to understand the underlying kinetics controlling these opposite ignition effects. At low temperatures, H-atom abstraction byO˙H radicals from C3 and larger fuels are the key chain-branching reactions consuming the fuel and providing the necessary fuel radicals, which undergo low temperature chemistry (LTC) leading to ignition. However, with the addition of hydrogen to the fuel mixture, the competition by H2 for O˙H radicals via the reaction H2 +  O˙H ↔ H˙ + H2O reduces the progress of the LTC of the higher hydrocarbon fuels thereby inhibiting ignition. At higher temperatures, since H˙ + O2 ↔ Ö + O˙H is the most sensitive reaction promoting reactivity, the higher concentrations of H2 in the fuel mixture lead to higher H˙ atom concentrations leading to faster ignition due to an enhanced rate of the H˙ + O2 ↔ Ö + O˙H reaction.

References

1.
Spadaccini
,
L. J.
, and
Colket
,
M. B.
,
1994
, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust. Sci.
,
20
(
5
), pp.
431
460
.10.1016/0360-1285(94)90011-6
2.
Faramawy
,
S.
,
Zaki
,
T.
, and
Sakr
,
A. A. E.
,
2016
, “
Natural Gas Origin, Composition, and Processing: A Review
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
34
54
.10.1016/j.jngse.2016.06.030
3.
Peng
,
W.
,
Hu
,
G.
,
Feng
,
Z.
,
Liu
,
D.
,
Wang
,
Y.
,
Lv
,
Y.
, and
Zhao
,
R.
,
2018
, “
Origin of Paleogene Natural Gases and Discussion of Abnormal Carbon Isotopic Composition of Heavy Alkanes in the Liaohe Basin, NE China
,”
Mar. Pet. Geol.
,
92
, pp.
670
684
.10.1016/j.marpetgeo.2017.11.028
4.
Bilkiewicz
,
E.
, and
Kowalski
,
T.
,
2020
, “
Origin of Hydrocarbon and Non-Hydrocarbon (H2S, CO2 and N2) Components of Natural Gas Accumulated in the Zechstein Main Dolomite (Ca2) Strata in SW Part of the Polish Permian Basin: Stable Isotope and Hydrous Pyrolysis Studies
,”
J. Pet. Sci. Eng.
,
192
, p.
107296
.10.1016/j.petrol.2020.107296
5.
Ma
,
A.
,
He
,
Z.
,
Yun
,
L.
,
Wu
,
X.
,
Qiu
,
N.
,
Chang
,
J.
,
Lin
,
H.
,
Cao
,
Z.
,
Zhu
,
X.
, and
You
,
D.
,
2021
, “
The Geochemical Characteristics and Origin of Ordovician Ultra-Deep Natural Gas in the North Shuntuoguole Area, Tarim Basin, NW China
,”
J. Nat. Gas Geosci.
,
6
, pp.
289
300
.10.1016/j.jnggs.2021.09.004
6.
Lu
,
J.
,
Luo
,
Z.
,
Zou
,
H.
,
Li
,
Y.
,
Hu
,
Z. Z.
,
Zhou
,
Z.
,
Zhu
,
J.
,
Han
,
M.
,
Zhao
,
L.
, and
Lin
,
Z.
,
2021
, “
Geochemical Characteristics, Origin, and Mechanism of Differential Accumulation of Natural Gas in the Carboniferous Kelameili Gas Field in Junggar Basin, China
,”
J. Pet. Sci. Eng.
,
203
, p.
108658
.10.1016/j.petrol.2021.108658
7.
Cho
,
H. M.
, and
He
,
B.-Q.
,
2007
, “
Spark Ignition Natural Gas Engines—A Review
,”
Energy Convers. Manage.
,
48
(
2
), pp.
608
618
.10.1016/j.enconman.2006.05.023
8.
Korakianitis
,
T.
,
Namasivayam
,
A. M.
, and
Crookes
,
R. J.
,
2011
, “
Natural-Gas Fueled Spark-Ignition (SI) and Compression-Ignition (CI) Engine Performance and Emissions
,”
Prog. Energy Combust. Sci.
,
37
(
1
), pp.
89
112
.10.1016/j.pecs.2010.04.002
9.
Wei
,
L.
, and
Geng
,
P.
,
2016
, “
A Review on Natural Gas/Diesel Dual Fuel Combustion, Emissions and Performance
,”
Fuel Process. Technol.
,
142
, pp.
264
278
.10.1016/j.fuproc.2015.09.018
10.
Koç
,
Y.
,
Yağlı
,
H.
,
Görgülü
,
A.
, and
Koç
,
A.
,
2020
, “
Analysing the Performance, Fuel Cost and Emission Parameters of the 50 MW Simple and Recuperative Gas Turbine Cycles Using Natural Gas and Hydrogen as Fuel
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
22138
22147
.10.1016/j.ijhydene.2020.05.267
11.
Zeng
,
W.
,
Pang
,
L.
,
Zheng
,
W.
, and
Hu
,
E.
,
2020
, “
Study on Combustion and Emission Characteristics of a Heavy-Duty Gas Turbine Combustor Fueled With Natural Gas
,”
Fuel
,
275
, p.
117988
.10.1016/j.fuel.2020.117988
12.
De Boer
,
P. C. T.
,
McLean
,
W. J.
, and
Homan
,
H. S.
,
1976
, “
Performance and Emissions of Hydrogen Fueled Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
1
(
2
), pp.
153
172
.10.1016/0360-3199(76)90068-9
13.
Granovskii
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2007
, “
Greenhouse Gas Emissions Reduction by Use of Wind and Solar Energies for Hydrogen and Electricity Production: Economic Factors
,”
Int. J. Hydrogen Energy
,
32
(
8
), pp.
927
931
.10.1016/j.ijhydene.2006.09.029
14.
do Sacramento
,
E. M.
,
de Lima
,
L. C.
,
Oliveira
,
C. J.
, and
Veziroglu
,
T. N.
,
2008
, “
A Hydrogen Energy System and Prospects for Reducing Emissions of Fossil Fuels Pollutants in the Ceará State—Brazil
,”
Int. J. Hydrogen Energy
,
33
(
9
), pp.
2132
2137
.10.1016/j.ijhydene.2008.02.018
15.
Dhyani
,
V.
, and
Subramanian
,
K. A.
,
2018
, “
Experimental Investigation on Effects of Knocking on Backfire and Its Control in a Hydrogen Fueled Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
43
(
14
), pp.
7169
7178
.10.1016/j.ijhydene.2018.02.125
16.
Yu
,
G.
,
Law
,
C. K.
, and
Wu
,
C. K.
,
1986
, “
Laminar Flame Speeds of Hydrocarbon + Air Mixtures With Hydrogen Addition
,”
Combust. Flame
,
63
(
3
), pp.
339
347
.10.1016/0010-2180(86)90003-9
17.
Krejci
,
M. C.
,
Mathieu
,
O.
,
Vissotski
,
A. J.
,
Ravi
,
S.
,
Sikes
,
T. G.
,
Petersen
,
E. L.
,
Kérmonès
,
A.
,
Metcalfe
,
W.
, and
Curran
,
H. J.
,
2013
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021503
.10.1115/1.4007737
18.
Dong
,
C.
,
Zhou
,
Q.
,
Zhao
,
Q.
,
Zhang
,
Y.
,
Xu
,
T.
, and
Hui
,
S.
,
2009
, “
Experimental Study on the Laminar Flame Speed of Hydrogen/Carbon Monoxide/Air Mixtures
,”
Fuel
,
88
(
10
), pp.
1858
1863
.10.1016/j.fuel.2009.04.024
19.
Wierzba
,
I.
, and
Wang
,
Q.
,
2006
, “
The Flammability Limits of H2–CO–CH4 Mixtures in Air at Elevated Temperatures
,”
Int. J. Hydrogen Energy
,
31
(
4
), pp.
485
489
.10.1016/j.ijhydene.2005.04.022
20.
Ilbas
,
M.
,
Crayford
,
A. P.
,
Yilmaz
,
I.
,
Bowen
,
P. J.
, and
Syred
,
N.
,
2006
, “
Laminar-Burning Velocities of Hydrogen–Air and Hydrogen–Methane–Air Mixtures: An Experimental Study
,”
Int. J. Hydrogen Energy
,
31
(
12
), pp.
1768
1779
.10.1016/j.ijhydene.2005.12.007
21.
Wang
,
J.
,
Huang
,
Z.
,
Miao
,
H.
,
Wang
,
X.
, and
Jiang
,
D.
,
2008
, “
Characteristics of Direct Injection Combustion Fuelled by Natural Gas–Hydrogen Mixtures Using a Constant Volume Vessel
,”
Int. J. Hydrogen Energy
,
33
(
7
), pp.
1947
1956
.10.1016/j.ijhydene.2008.01.007
22.
Van Blarigan
,
P.
, and
Keller
,
J. O.
,
1998
, “
A Hydrogen Fuelled Internal Combustion Engine Designed for Single Speed/Power Operation
,”
Int. J. Hydrogen Energy
,
23
, pp.
603
609
.10.1016/S0360-3199(97)00100-6
23.
Wang
,
J.
,
Huang
,
Z.
,
Fang
,
Y.
,
Liu
,
B.
,
Zeng
,
K.
,
Miao
,
H.
, and
Jiang
,
D.
,
2007
, “
Combustion Behaviors of a Direct-Injection Engine Operating on Various Fractions of Natural Gas–Hydrogen Blends
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3555
3564
.10.1016/j.ijhydene.2007.03.011
24.
Saravanan
,
N.
, and
Nagarajan
,
G.
,
2008
, “
An Experimental Investigation of Hydrogen-Enriched Air Induction in a Diesel Engine System
,”
Int. J. Hydrogen Energy
,
33
(
6
), pp.
1769
1775
.10.1016/j.ijhydene.2007.12.065
25.
Coppens
,
F. H. V.
,
De Ruyck
,
J.
, and
Konnov
,
A. A.
,
2007
, “
The Effects of Composition on Burning Velocity and Nitric Oxide Formation in Laminar Premixed Flames of CH4 + H2 + O2 + N2
,”
Combust. Flame
,
149
(
4
), pp.
409
417
.10.1016/j.combustflame.2007.02.004
26.
Gersen
,
S.
,
Anikin
,
N. B.
,
Mokhov
,
A. V.
, and
Levinsky
,
H. B.
,
2008
, “
Ignition Properties of Methane/Hydrogen Mixtures in a Rapid Compression Machine
,”
Int. J. Hydrogen Energy
,
33
(
7
), pp.
1957
1964
.10.1016/j.ijhydene.2008.01.017
27.
Gersen
,
S.
,
Darmeveil
,
H.
, and
Levinsky
,
H.
,
2012
, “
The Effects of CO Addition on the Autoignition of H2, CH4 and CH4/H2 Fuels at High Pressure in an RCM
,”
Combust. Flame
,
159
(
12
), pp.
3472
3475
.10.1016/j.combustflame.2012.06.021
28.
Donohoe
,
N.
,
Heufer
,
A.
,
Metcalfe
,
W. K.
,
Curran
,
H. J.
,
Davis
,
M. L.
,
Mathieu
,
O.
,
Plichta
,
D.
,
Morones
,
A.
,
Petersen
,
E. L.
, and
Güthe
,
F.
,
2014
, “
Ignition Delay Times, Laminar Flame Speeds, and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
Combust. Flame
,
161
(
6
), pp.
1432
1443
.10.1016/j.combustflame.2013.12.005
29.
Liu
,
C.
,
Song
,
H.
,
Zhang
,
P.
,
Wang
,
Z.
,
Wooldridge
,
M. S.
,
He
,
X.
, and
Suo
,
G.
,
2018
, “
A Rapid Compression Machine Study of Autoignition, Spark-Ignition and Flame Propagation Characteristics of H2/CH4/CO/Air Mixtures
,”
Combust. Flame
,
188
, pp.
150
161
.10.1016/j.combustflame.2017.09.031
30.
Healy
,
D.
,
Kalitan
,
D. M.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Oxidation of C1−C5 Alkane Quinternary Natural Gas Mixtures at High Pressures
,”
Energy Fuels
,
24
(
3
), pp.
1521
1528
.10.1021/ef9011005
31.
Healy
,
D.
,
Donato
,
N. S.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Zinner
,
C. M.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
n-Butane: Ignition Delay Time Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Combust. Flame
,
157
(
8
), pp.
1526
1539
.10.1016/j.combustflame.2010.01.016
32.
Healy
,
D.
,
Kopp
,
M. M.
,
Polley
,
N. L.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Methane/n-Butane Ignition Delay Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Energy Fuels
,
24
(
3
), pp.
1617
1627
.10.1021/ef901292j
33.
Healy
,
D.
,
Donato
,
N. S.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Zinner
,
C. M.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Isobutane Ignition Delay Time Measurements at High Pressure and Detailed Chemical Kinetic Simulations
,”
Combust. Flame
,
157
(
8
), pp.
1540
1551
.10.1016/j.combustflame.2010.01.011
34.
Donato
,
N.
,
Aul
,
C.
,
Petersen
,
E.
,
Zinner
,
C.
,
Curran
,
H.
, and
Bourque
,
G.
,
2010
, “
Ignition and Oxidation of 50/50 Butane Isomer Blends
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
051502
.10.1115/1.3204654
35.
Mohamed
,
A.-S.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Bourque
,
G.
, and
Curran
,
H.
,
2020
, “
An Experimental and Kinetic Modeling Study of the Auto-Ignition of Natural Gas Blends Containing C1–C7 Alkanes
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
365
373
.
36.
Sahu
,
A. B.
,
Mohamed
,
A.-S.
,
Panigrahy
,
S.
,
Bourque
,
G.
, and
Curran
,
H.
,
2021
, “
Ignition Studies of C1–C7 Natural Gas Blends at Gas-Turbine-Relevant Conditions
,”
ASME J. Eng. Gas Turbines Power
,
143
, p.
081022
.10.1115/1.4050063
37.
Baigmohammadi
,
M.
,
Patel
,
V.
,
Martinez
,
S.
,
Panigrahy
,
S.
,
Ramalingam
,
A.
,
Burke
,
U.
,
Somers
,
K. P.
,
Heufer
,
K. A.
,
Pekalski
,
A.
, and
Curran
,
H. J.
,
2020
, “
A Comprehensive Experimental and Simulation Study of Ignition Delay Time Characteristics of Single Fuel C1–C2 Hydrocarbons Over a Wide Range of Temperatures, Pressures, Equivalence Ratios, and Dilutions
,”
Energy Fuels
,
34
(
3
), pp.
3755
3771
.10.1021/acs.energyfuels.9b04139
38.
Nakamura
,
H.
,
Darcy
,
D.
,
Mehl
,
M.
,
Tobin
,
C. J.
,
Metcalfe
,
W. K.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2014
, “
An Experimental and Modeling Study of Shock Tube and Rapid Compression Machine Ignition of n-Butylbenzene/Air Mixtures
,”
Combust. Flame
,
161
(
1
), pp.
49
64
.10.1016/j.combustflame.2013.08.002
39.
Morley
,
C.
,
2017
, “
Gaseq Program
,” accessed Sept. 9, 2022, http://www.gaseq.co.uk
40.
Nagaraja
,
S. S.
,
Power
,
J.
,
Kukkadapu
,
G.
,
Dong
,
S.
,
Wagnon
,
S. W.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2020
, “
A Single Pulse Shock Tube Study of Pentene Isomer Pyrolysis
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
881
889
.10.1016/j.proci.2020.06.069
41.
Nagaraja
,
S. S.
,
Liang
,
J.
,
Dong
,
S.
,
Panigrahy
,
S.
,
Sahu
,
A.
,
Kukkadapu
,
G.
,
Wagnon
,
S. W.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2020
, “
A Hierarchical Single-Pulse Shock Tube Pyrolysis Study of C2–C6 1-Alkenes
,”
Combust. Flame
,
219
, pp.
456
466
.10.1016/j.combustflame.2020.06.021
42.
Dong
,
S.
,
Zhang
,
K.
,
Senecal
,
P. K.
,
Kukkadapu
,
G.
,
Wagnon
,
S. W.
,
Barrett
,
S.
,
Lokachari
,
N.
,
Panigaphy
,
S.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2020
, “
A Comparative Reactivity Study of 1-Alkene Fuels From Ethylene to 1-Heptene
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
611
619
.10.1016/j.proci.2020.07.053
43.
Panigrahy
,
S.
,
Liang
,
J.
,
Ghosh
,
M. K.
,
De Wang
,
Q.
,
Zuo
,
Z.
,
Nagaraja
,
S.
,
Mohamed
,
A.
,
Kim
,
G.
,
Vasu
,
S. S.
, and
Curran
,
H. J.
,
2021
, “
An Experimental and Detailed Kinetic Modeling Study of the Pyrolysis and Oxidation of Allene and Propyne Over a Wide Range of Conditions
,”
Combust. Flame
,
233
, p.
111578
.10.1016/j.combustflame.2021.111578
44.
Baigmohammadi
,
M.
,
Patel
,
V.
,
Nagaraja
,
S.
,
Ramalingam
,
A.
,
Martinez
,
S.
,
Panigrahy
,
S.
,
Mohamed
,
A.-S.
,
Somers
,
K. P.
,
Burke
,
U.
,
Heufer
,
K. A.
,
Pekalski
,
A.
, and
Curran
,
H. J.
,
2020
, “
Comprehensive Experimental and Simulation Study of the Ignition Delay Time Characteristics of Binary Blended Methane, Ethane, and Ethylene Over a Wide Range of Temperature, Pressure, Equivalence Ratio, and Dilution
,”
Energy Fuels
,
34
(
7
), pp.
8808
8823
.10.1021/acs.energyfuels.0c00960
45.
Wu
,
Y.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Bariki
,
C.
,
Beeckmann
,
J.
,
Liang
,
J.
,
Mohamed
,
A. A. E.
,
Dong
,
S.
,
Tang
,
C.
,
Pitsch
,
H.
,
Huang
,
Z.
, and
Curran
,
H. J.
,
2021
, “
Understanding the Antagonistic Effect of Methanol as a Component in Surrogate Fuel Models: A Case Study of Methanol/n-Heptane Mixtures
,”
Combust. Flame
,
226
, pp.
229
242
.10.1016/j.combustflame.2020.12.006
46.
Mohamed
,
A. A. E.
,
Sahu
,
A.
,
Panigrahy
,
S.
,
Bourque
,
G.
, and
Curran
,
H.
,
2021
, “
Ignition Delay Time Correlation of C1 - C5 Natural Gas Blends for Intermediate and High Temperature Regime
,”
ASME J. Eng. Gas Turbines Power
,
143
, p. 121025.10.1115/1.4051908
47.
Martinez
,
S.
,
Baigmohammadi
,
M.
,
Patel
,
V.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Nagaraja
,
S. S.
,
Ramalingam
,
A.
,
Mohamed
,
A.
,
Somers
,
K. P.
,
Heufer
,
K. A.
,
Pekalski
,
A.
, and
Curran
,
H. J.
,
2021
, “
An Experimental and Kinetic Modeling Study of the Ignition Delay Characteristics of Binary Blends of Ethane/Propane and Ethylene/Propane in Multiple Shock Tubes and Rapid Compression Machines Over a Wide Range of Temperature, Pressure, Equivalence Ratio
,”
Combust. Flame
,
228
, pp.
401
414
.10.1016/j.combustflame.2021.02.009
48.
CHEMKIN-PRO 15112
,
2011
, “
CHEMKIN Tutorials Manual
,”
Reaction Design
,
San Diego, CA
.
49.
Martinez
,
S.
,
Baigmohammadi
,
M.
,
Patel
,
V.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Nagaraja
,
S.
,
Ramalingam
,
A.
,
Heufer
,
K. A.
,
Pekalski
,
A.
, and
Curran
,
H. J.
,
2021
, “
A Comprehensive Experimental and Modeling Study of the Ignition Delay Time Characteristics of Ternary and Quaternary Blends of Methane, Ethane, Ethylene, and Propane Over a Wide Range of Temperature, Pressure, Equivalence Ratio, and Dilution
,”
Combust. Flame
,
234
, p.
111626
.10.1016/j.combustflame.2021.111626
50.
Olm
,
C.
,
Zsély
,
I. G.
,
Pálvölgyi
,
R.
,
Varga
,
T.
,
Nagy
,
T.
,
Curran
,
H. J.
, and
Turányi
,
T.
,
2014
, “
Comparison of the Performance of Several Recent Hydrogen Combustion Mechanisms
,”
Combust. Flame
,
161
(
9
), pp.
2219
2234
.10.1016/j.combustflame.2014.03.006
51.
Sahu
,
A. B.
,
Mohamed
,
A.-S.
,
Panigrahy
,
S.
,
Saggese
,
C.
,
Patel
,
V.
,
Bourque
,
G.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2022
, “
An Experimental and Kinetic Modeling Study of NOx Sensitization on Methane Autoignition and Oxidation
,”
Combust. Flame
,
238
, p.
111746
.10.1016/j.combustflame.2021.111746
You do not currently have access to this content.