Abstract

At a low mass ratio of structure to air, the work-per-cycle approach, or better known as the energy method, will lead to nonconservative results as aerodynamic coupling of modeshapes acts destabilizing. Using the p–k method to solve the aeroelastic stability equation, the effects of various structural aspects are investigated for a two-dimensional compressor cascade in subsonic and transonic flow conditions. The investigated key parameters are frequency separation, mass ratio, and solidity. Furthermore, the effect of a high frequency dependency of the aerodynamic forces is presented. Such phenomena can happen in case of aerodynamic or acoustic resonances. If the resonance peaks are close to the aeroelastic frequency, a discontinuous behavior of the frequency or damping solution can lead to a rapid destabilization of the system, once the aeroelastic frequency moves from one side to the other of the peak. In these regimes, it is crucial to have a high quality representation of the frequency-dependent generalized aerodynamic forces (GAFs) for an accurate prediction of the flutter onset.

References

1.
Hassig
,
H. J.
,
1971
, “
An Approximate True Damping Solution of the Flutter Equation by Determinant Iteration
,”
J. Aircr.
,
8
(
11
), pp.
885
889
.10.2514/3.44311
2.
Schuff
,
M.
, and
Chenaux
,
V. A.
,
2021
, “
Coupled Mode Flutter Analysis of Turbomachinery Blades Using an Adaptation of the pk Method
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021017
.10.1115/1.4048986
3.
Carstens
,
V.
, and
Belz
,
J.
,
2001
, “
Numerical Investigation of Nonlinear Fluid-Structure Interaction in Vibrating Compressor Blades
,”
ASME J. Turbomach.
,
123
(
2
), pp.
402
408
.10.1115/1.1354138
4.
Sadeghi
,
M.
, and
Liu
,
F.
,
2005
, “
Computation of Cascade Flutter by Uncoupled and Coupled Methods
,”
Int. J. Comput. Fluid Dyn.
,
19
(
8
), pp.
559
569
.10.1080/10618560500508367
5.
Clark
,
S. T.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2009
, “
The Effect of Mass Ratio, Frequency Separation and Solidity on Multi-Mode Fan Flutter
,”
Proceedings of the 12th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, ISUAAAT12
, London, UK, Paper No. I12-S3-2.
6.
Clark
,
S. T.
,
2013
, “
Design for Coupled-Mode Flutter and Non-Synchronous Vibration in Turbomachinery
,” Ph.D. thesis,
Duke University, Durham, NC
.
7.
Marshall
,
J. G.
, and
Imregun
,
M.
,
1996
, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
J. Fluids Struct.
,
10
(
3
), pp.
237
267
.10.1006/jfls.1996.0015
8.
Vahdati
,
M.
,
Lee
,
K.-B.
, and
Sureshkumar
,
P.
,
2020
, “
A Review of Computational Aeroelasticity of Civil Fan Blades
,”
Int. J. Gas Turbine Propul. Power Syst.
,
11
(
4
), pp.
22
35
.10.38036/jgpp.11.4_22
9.
Sadeghi
,
M.
,
Yang
,
M.-T.
,
Shang
,
H.-M.
, and
Grover
,
E.
,
2020
, “
On the Effect and Analysis of Fluid-Structural Mode Coupling
,”
ASME
Paper No. GT2020-15083.10.1115/GT2020-15083
10.
Gao
,
C.
, and
Zhang
,
W.
,
2020
, “
Transonic Aeroelasticity: A New Perspective From the Fluid Mode
,”
Prog. Aerosp. Sci.
,
113
, p.
100596
.10.1016/j.paerosci.2019.100596
11.
Nitzsche
,
J.
,
Ringel
,
L. M.
,
Kaiser
,
C.
, and
Hennings
,
H.
,
2019
, “
Fluid-Mode Flutter in Plane Transonic Flows
,”
International Forum on Aeroelasticity and Structural Dynamics, IFASD 2019
, Savannah, GA, June 9–13, Paper No. IFASD-2019-006.
12.
Lane
,
F.
,
1956
, “
System Mode Shapes in the Flutter of Compressor Blade Rows
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
54
66
.10.2514/8.3502
13.
Bisplinghoff
,
R. L.
,
Ashley
,
H.
, and
Halfman
,
R. L.
,
1957
,
Aeroelasticity
,
Addison-Wesley Publishing Company
, Boston, MA.
14.
Carta
,
F. O.
,
1967
, “
Coupled Blade-Disk-Shroud Flutter Instabilities in Turbojet Engine Rotors
,”
ASME J. Eng. Power
,
89
(
3
), pp.
419
426
.10.1115/1.3616708
15.
Vacher
,
P.
,
Jacquier
,
B.
, and
Bucharles
,
A.
,
2010
, “
Extensions of the MAC Criterion to Complex Modes
,”
Proceedings of the International Conference on Noise and Vibration Engineering, ISMA 2010
, Leuven, Belgium, Sept. 20–22, pp.
2713
2726
.http://past.isma-isaac.be/downloads/isma2010/papers/isma2010_0103.pdf
16.
Chenaux
,
V. A.
, and
Grüber
,
B.
,
2015
, “
Aeroelastic Investigation of an Annular Transonic Compressor Cascade: Numerical Sensitivity Study for Validation Purposes
,”
ASME
Paper No. GT2015-43297.10.1115/GT2015-43297
17.
Kersken
,
H.-P.
,
Frey
,
C.
,
Voigt
,
C.
, and
Ashcroft
,
G.
,
2012
, “
Time-Linearized and Time-Accurate 3D RANS Methods for Aeroelastic Analysis in Turbomachinery
,”
ASME J. Turbomach.
,
134
(
5
), p.
051024
.10.1115/1.4004749
18.
Ashcroft
,
G.
,
Frey
,
C.
, and
Kersken
,
H.-P.
,
2014
, “
On the Development of a Harmonic Balance Method for Aeroelastic Analysis
,”
Proceedings of the 6th European Conference on Computational Fluid Dynamics
, ECFD VI, Barcelona, Spain, July 20–25, pp.
5885
5896
.https://www.researchgate.net/publication/265414877_On_the_development_of_a_harmonic_balance_method_for_aeroelastic_analysis
19.
Thormann
,
R.
, and
Widhalm
,
M.
,
2013
, “
Linear-Frequency-Domain Predictions of Dynamic-Response Data for Viscous Transonic Flows
,”
AIAA J.
,
51
(
11
), pp.
2540
2557
.10.2514/1.J051896
20.
Kersken
,
H.-P.
,
Ashcroft
,
G.
,
Frey
,
C.
,
Wolfrum
,
N.
, and
Korte
,
D.
,
2014
, “
Nonreflecting Boundary Conditions for Aeroelastic Analysis in Time and Frequency Domain 3D RANS Solvers
,”
ASME
Paper No. GT2014-25499.10.1115/GT2014-25499
21.
Schuff
,
M.
, and
Chenaux
,
V. A.
,
2021
, “
Coupled Mode Flutter of a Linear Compressor Cascade in Subsonic and Transonic Flow Conditions
,”
J. Phys.: Conf. Ser.
,
1909
(
1
), p.
012033
.10.1088/1742-6596/1909/1/012033
You do not currently have access to this content.