Abstract

Although inherently unstable, existing research in rotating detonation combustion supports its application in notionally steady processes resulting in greater availability compared to conventional, constant pressure combustion. Further improvements rely on a more in-depth understanding of system losses and identifying conditions which optimize device performance. Within this study, the presence and proportion of ideal and nonideal combustion regimes are compared across a variety of process conditions and wave modes. Large-scale data analysis seeks to summarize proportional heat release associated with commensal, parasitic, and detonative combustion averaged across individual traces of OH* chemiluminescent data acquired at the detonation plane. Means of regime partitioning based on the anatomy of the time-resolved OH* signal are proposed to ensure consistent analysis throughout the current and future studies concerning combustion regimes. Of particular interest is the possible influence of wave on the nonideal combustion in relative proportion to the desired detonation. Results showed improved percent detonation with increasing significance for the following trends: decreasing equivalence ratio, increasing wave count, decreasing wave velocity, and increasing detonation time. Increased wave number, brought on by decreased equivalence ratios and wave velocities, is thought to decrease fill region surface area, and therefore, decrease nonideal contact burning. Additional analysis is performed to consider possible trend variation due to the presence of stable galloping waves, which were found to have minimal influence on relative percent detonation values. The outcome of this study suggests operational states, which correspond to increased wave quantities for increased proportions of reactants consumed by the targeted detonative combustion regime.

References

1.
Sousa
,
J.
,
Paniagua
,
G.
, and
Collado Morata
,
E.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy
,
195
, pp.
247
256
.10.1016/j.apenergy.2017.03.045
2.
Ferguson
,
D. H.
,
O'Meara
,
B.
,
Roy
,
A.
, and
Johnson
,
K.
,
2020
, “
Experimental Measurements of NOx Emissions in a Rotating Detonation Engine
,”
AIAA
Paper No. 2020-0204.10.2514/6.2020-0204
3.
Bigler
,
B. R.
,
Bennewitz
,
J. W.
,
Schumaker
,
S. A.
,
Danczyk
,
S. A.
, and
Hargus
,
W. A.
,
2019
, “
Injector Alignment Study for Variable Mixing in Rotating Detonation Rocket Engines
,”
AIAA
Paper No. 2019-2019.10.2514/6.2019-2019
4.
Knowlen
,
C.
,
Koch
,
J.
,
Kurosaka
,
M.
, and
Washington
,
M.
,
2019
, “
Radial Injector Mixing Effects on Detonation Zone Position in Rotating Detonation Engine
,”
AIAA
Paper No. 2019-4131.10.2514/6.2019-4131
5.
Bedick
,
C. R.
,
Ferguson
,
D. H.
, and
Strakey
,
P. A.
,
2019
, “
Characterization of Rotating Detonation Engine Injector Response Using Laser-Induced Fluorescence
,”
J. Propul. Power
,
35
(
4
), pp.
827
838
.10.2514/1.B37309
6.
Keller
,
A. R.
,
Otomize
,
J.
,
Nair
,
A. P.
,
Minesi
,
N. Q.
, and
Spearrin
,
R. M.
,
2022
, “
High-Diodicity Impinging Injector Design for Rocket Propulsion Enabled by Additive Manufacturing
,”
AIAA
2022-1265.10.2514/6.2022-1265
7.
Braun
,
J.
,
Cuadrado
,
D. G.
,
Andreoli
,
V.
,
Paniagua
,
G.
,
Liu
,
Z.
,
Saavedra
,
J.
,
Athmanathan
,
V.
, and
Meyer
,
T.
,
2019
, “
Characterization of an Integrated Nozzle and Supersonic Axial Turbine With a Rotating Detonation Combustor
,”
AIAA
Paper No. 2019-3873.10.2514/6.2019-3873
8.
Lakebrink
,
M. T.
,
Mani
,
M.
, and
Winkler
,
C. M.
,
2017
, “
Numerical Investigation of Fluidic-Oscillator Flow Control in an S-Duct Diffuser
,”
AIAA
Paper No. 2017-1455.10.2514/6.2017-1455
9.
Liu
,
Z.
,
Braun
,
J.
, and
Paniagua
,
G.
,
2020
, “
Integration of a Transonic High-Pressure Turbine With a Rotating Detonation Combustor and a Diffuser
,”
Int. J. Turbo Jet Engines.
, pp. 1–10.10.1515/tjeng-2020-0016
10.
Athmanathan
,
V.
,
Fisher
,
J. M.
,
Ayers
,
Z.
,
Cuadrado
,
D. G.
,
Andreoli
,
V.
,
Braun
,
J.
,
Meyer
,
T.
,
Paniagua
,
G.
,
Fugger
,
C. A.
, and
Roy
,
S.
,
2019
, “
Turbine-Integrated High-Pressure Optical RDE (THOR) for Injection and Detonation Dynamics Assessment
,”
AIAA
Paper No. 2019-4041.10.2514/6.2019-4041
11.
Chacon
,
F.
, and
Gamba
,
M.
,
2019
, “
Study of Parasitic Combustion in an Optically Accessible Continuous Wave Rotating Detonation Engine
,”
AIAA
Paper No. 2019-0473.10.2514/6.2019-0473
12.
Feleo
,
A.
,
France
,
J.
,
White
,
L. W.
, and
Gamba
,
M.
,
2019
, “
Evaluation of OH* Emission for Determining Operation of a Rotating Detonation Engine
,”
AIAA
Paper No. 2019-2252.10.2514/6.2019-2252
13.
Feleo
,
A.
,
Chacon
,
F.
, and
Gamba
,
M.
,
2019
, “
Effects of Heat Release Distribution on Detonation Properties in a H2/Air Rotating Detonation Combustor From OH* Chemiluminescence
,”
AIAA
Paper No. 2019-4045.10.2514/6.2019-4045
14.
Brophy
,
C. M.
, and
Codoni
,
J. R.
,
2019
, “
Experimental Performance Characterization of an RDE Using Equivalent Available Pressure
,”
AIAA
Paper No. 2019-4212.10.2514/6.2019-4212
15.
Johnson
,
K. B.
,
Weber
,
J. M.
,
Ferguson
,
D. H.
, and
Nix
,
A. C.
,
2023
, “
Analysis of Quasi-Steady, Transitional, and Short Timescale Galloping Within Rotating Detonation Engines
,”
AIAA
Paper No. 2023-0931.10.2514/6.2023-0931
16.
Edwards
,
D. H.
, and
Morgan
,
J. M.
,
1977
, “
Instabilities in Detonation Waves Near the Limits of Propagation
,”
J. Phys. D
,
10
(
17
), pp.
2377
2387
.10.1088/0022-3727/10/17/009
17.
Gao
,
Y.
,
Ng
,
H. D.
, and
Lee
,
J. H. S.
,
2015
, “
Experimental Characterization of Galloping Detonations in Unstable Mixtures
,”
Combust. Flame
,
162
(
6
), pp.
2405
2413
.10.1016/j.combustflame.2015.02.007
18.
Bohon
,
M.
,
Bluemner
,
R.
,
Paschereit
,
C.
, and
Gutmark
,
E.
,
2019
, “
High-Speed Imaging of Wave Modes in an RDC
,”
Exp. Therm. Fluid Sci.
,
102
(
28
), pp.
28
37
.10.1016/j.expthermflusci.2018.10.031
19.
Bennewitz
,
J. W.
,
Bigler
,
B. R.
,
Schumaker
,
S. A.
, and
Hargus
,
W. A.
,
2019
, “
Automated Image Processing Method to Quantify Rotating Detonation Wave Behavior
,”
Rev. Sci. Instrum.
,
90
(
6
), p.
065106
.10.1063/1.5067256
20.
Batista
,
A.
,
Bigler
,
B. R.
,
Ross
,
M.
,
Lietz
,
C.
, and
Hargus
,
W. A.
,
2021
, “
Detonation Wave Collision Study During Rotating Detonation Rocket Engine Counter-Propagating Modes
,”
AIAA
Paper No. 2021-3659.10.2514/6.2021-3659
You do not currently have access to this content.