Abstract

To lay the foundations of establishing low-cost methods, which can predict characteristics of swirl distortion inexpensively, experimental investigations on the correlation between total pressure and swirl distortions of an S-duct intake model are implemented. A baffle plate is installed at the inlet of the intake model to generate strong inlet flow distortions, and the flow field at the outlet of the duct is measured using five-hole probes, which are calibrated using zonal calibration algorithm. Total pressure and swirl distortions associated with the baffle plate installed at the upper part of the intake model show no correlations. When baffle plate is installed at left/right part of the intake model, strong total pressure and swirl distortions will interact with each other, and both strength and circumferential location of the two types of distortion are well correlated by linear relationships. When baffle plate is installed at the lower part of the intake model, strong total pressure and paired swirl distortions are induced, and strength of the two types of distortion is well correlated by linear relationship.

References

1.
Beale
,
D.
,
Davis
,
M.
, and
Sirbaugh
,
J.
,
2006
, “
Requirements and Advances in Simulating Aircraft Inlet Total Pressure Distortion in Turbine Engine Ground Tests
,”
ASME
Paper No. GT2006-90038.10.1115/GT2006-90038
2.
Kurzke
,
J.
,
2008
, “
Effects of Inlet Flow Distortion on the Performance of Aircraft Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
041201
.10.1115/1.2901190
3.
Binkley
,
B. A.
,
Malloy
,
D. J.
,
Patterson
,
G. T.
,
Hansen
,
E. R.
, and
Kidman
,
D. S.
,
2013
, “
Aircraft Propulsion System Flight Test—Analysis and Evaluation Challenges and Integrated Solutions
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061201
.10.1115/1.4023610
4.
Carnevale
,
M.
,
Wang
,
F.
, and
di Mare
,
L.
,
2017
, “
Low Frequency Distortion in Civil Aero-Engine Intake
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041203
.10.1115/1.4034600
5.
Society of Automotive Engineers, S-16 Turbine Engine Inlet Flow Distortion Committee
,
2021
, “
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion
,” SAE International, Warrendale, PA, Report No.
ARP6420
.https://www.sae.org/standards/content/arp6420/
6.
Andreou
,
T.
,
White
,
C.
,
Kontis
,
K.
,
Shahpar
,
S.
, and
Brown
,
N.
,
2020
, “
Part 1: A Swirl Vane Generation Code for Fuel Spray Nozzles
,”
ASME
Paper No. GT2020-15414.10.1115/GT2020-15414
7.
Andreou
,
T.
,
White
,
C.
,
Kontis
,
K.
,
Shahpar
,
S.
, and
Brown
,
N.
,
2020
, “
Part 2: Design Optimisation Strategies for a Fuel Spray Nozzle
,”
ASME
Paper No. GT2020-15431.10.1115/GT2020-15431
8.
Wojewodka
,
M. M.
,
White
,
C.
,
Shahpar
,
S.
, and
Kontis
,
K.
,
2018
, “
A Review of Flow Control Techniques and Optimisation in S-Shaped Ducts
,”
Int. J. Heat Fluid Flow
,
74
, pp.
223
235
.10.1016/j.ijheatfluidflow.2018.06.016
9.
Wojewodka
,
M. M.
,
White
,
C.
,
Shahpar
,
S.
, and
Kontis
,
K.
,
2022
, “
Numerical Study of Complex Flow Physics and Coherent Structures of the Flow Through a Convoluted Duct
,”
Aerosp. Sci. Technol.
,
121
, p.
107191
.10.1016/j.ast.2021.107191
10.
Frohnapfel
,
D. J.
,
Lowe
,
K. T.
, and
O'Brien
,
W. F.
,
2020
, “
Development, Analysis, and Validation of a Simultaneous Inlet Total Pressure and Swirl Distortion Generator
,”
ASME
Paper No. GT2020-16125.10.1115/GT2020-16125
11.
Society of Automotive Engineers, S-16 Turbine Engine Inlet Flow Distortion Committee
,
2017
, “
Inlet Total-Pressure-Distortion Considerations for Gas-Turbine Engines
,” SAE International, Warrendale, PA, Report No.
AIR1419C
.https://www.sae.org/standards/content/air1419c/
12.
Society of Automotive Engineers, S-16 Turbine Engine Inlet Flow Distortion Committee
,
2017
, “
A Methodology for Assessing Inlet Swirl Distortion
,” SAE International, Warrendale, PA, Report No.
AIR5686
.https://www.sae.org/standards/content/air5686/#:~:text=These%20tests%20and%20analyses%20must,%2C%20and%20(3)%20test%20protocols
13.
Davis
,
M.
,
Hale
,
A.
, and
Beale
,
D.
,
2002
, “
An Argument for Enhancement of the Current Inlet Distortion Ground Test Practice for Aircraft Gas Turbine Engines
,”
ASME J. Turbomach.
,
124
(
2
), pp.
235
241
.10.1115/1.1451087
14.
Sheoran
,
Y.
,
Bouldin
,
B.
, and
Krishnan
,
P. M.
,
2012
, “
Compressor Performance and Operability in Swirl Distortion
,”
ASME J. Turbomach.
,
134
(
4
), p.
041008
.10.1115/1.4003657
15.
Giuliani
,
J. E.
, and
Chen
,
J. P.
,
2016
, “
Fan Response to Boundary-Layer Ingesting Inlet Distortions
,”
AIAA J.
,
54
(
10
), pp.
3232
3243
.10.2514/1.J054762
16.
Hall
,
D. K.
,
Greitzer
,
E. M.
,
Uranga
,
A.
,
Drela
,
M.
, and
Pandya
,
S. A.
,
2022
, “
Inlet Flow Distortion in an Advanced Civil Transport Boundary Layer Ingesting Engine Installation
,”
ASME J. Turbomach.
,
144
(
10
), p.
101002
.10.1115/1.4054035
17.
Wang
,
X.
,
Hu
,
J.
,
Guo
,
J.
,
Jiang
,
C.
, and
Wang
,
Z.
,
2021
, “
Prestall Disturbances and Stall Inception for an Eccentric Low-Speed Axial Compressor With Inlet Swirl
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061021
.10.1115/1.4049382
18.
Frohnapfel
,
D. J.
,
Todd Lowe
,
K.
, and
O'Brien
,
W. F.
,
2018
, “
Experimental Quantification of Fan Rotor Effects on Inlet Swirl Using Swirl Distortion Descriptors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082603
.10.1115/1.4039425
19.
Stephens
,
J. E.
,
Celestina
,
M.
, and
Hughes
,
C.
,
2019
, “
Swirl Distortion Using Stream Vanes for Boundary Layer Ingestion Research
,”
ASME
Paper No. GT2019-92073.10.1115/GT2019-92073
20.
Rademakers
,
R. P. M.
,
Bindl
,
S.
, and
Niehuis
,
R.
,
2016
, “
Effects of Flow Distortions as They Occur in S-Duct Inlets on the Performance and Stability of a Jet Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022605
.10.1115/1.4031305
21.
Doll
,
U.
,
Migliorini
,
M.
,
Baikie
,
J.
,
Zachos
,
P. K.
,
Röhle
,
I.
,
Melnikov
,
S.
,
Steinbock
,
J.
,
Dues
,
M.
,
Kapulla
,
R.
,
MacManus
,
D. G.
, and
Lawson
,
N. J.
,
2022
, “
Non-Intrusive Flow Diagnostics for Unsteady Inlet Flow Distortion Measurements in Novel Aircraft Architectures
,”
Prog. Aerosp. Sci.
,
130
, p.
100810
.10.1016/j.paerosci.2022.100810
22.
Naseri
,
A.
,
Sammak
,
S.
,
Boroomand
,
M.
,
Alihosseini
,
A.
, and
Tousi
,
A. M.
,
2018
, “
Experimental Investigation of Inlet Distortion Effect on Performance of a Micro Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092604
.10.1115/1.4039057
23.
Zachos
,
P. K.
,
MacManus
,
D. G.
,
Prieto
,
D. G.
, and
Chiereghin
,
N.
,
2016
, “
Flow Distortion Measurements in Convoluted Aeroengine Intakes
,”
AIAA J.
,
54
(
9
), pp.
2819
2832
.10.2514/1.J054904
24.
Gil-Prieto
,
D.
,
MacManus
,
D. G.
,
Zachos
,
P. K.
,
Tanguy
,
G.
, and
Menzies
,
K. R.
,
2017
, “
Convoluted Intake Distortion Measurements Using Stereo Particle Image Velocimetry
,”
AIAA J.
,
55
(
6
), pp.
1878
1892
.10.2514/1.J055467
25.
Guimarães
,
T.
,
Todd Lowe
,
K.
, and
O'Brien
,
W. F.
,
2018
, “
Complex Flow Generation and Development in a Full-Scale Turbofan Inlet
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082606
.10.1115/1.4039179
26.
McLelland
,
G.
,
MacManus
,
D. G.
,
Zachos
,
P. K.
,
Gil-Prieto
,
D.
, and
Migliorini
,
M.
,
2020
, “
Influence of Upstream Total Pressure Profiles on S-Duct Intake Flow Distortion
,”
J. Propul. Power
,
36
(
3
), pp.
346
356
.10.2514/1.B37554
27.
Song
,
G.
,
Li
,
J.
,
Tang
,
M.
,
Wu
,
Y.
, and
Luo
,
Y.
,
2021
, “
Experimental Simulation Methodology and Spatial Transition of Complex Distortion Fields in a S-Shaped Inlet
,”
Aerosp. Sci. Technol.
,
116
, p.
106855
.10.1016/j.ast.2021.106855
28.
Frohnapfel
,
D. J.
,
Ferrar
,
A. M.
,
Bailey
,
J.
,
O'Brien
,
W. F.
, and
Lowe
,
K. T.
,
2016
, “
Measurements of Fan Response to Inlet Total Pressure and Swirl Distortions Produced by Boundary Layer Ingesting Aircraft Configurations
,”
AIAA
Paper No. 2016-0533.10.2514/6.2016-0533
29.
Zachos
,
P. K.
,
Frascella
,
M.
,
MacManus
,
D. G.
, and
Gil-Prieto
,
D.
,
2017
, “
Pressure Flowfield and Inlet Flow Distortion Metrics Reconstruction From Velocity Data
,”
AIAA J.
,
55
(
9
), pp.
2929
2941
.10.2514/1.J055585
30.
Sun
,
D.
,
Li
,
Z.
,
Dong
,
X.
, and
Sun
,
X.
,
2022
, “
Calibration of S-Duct Swirl Distortion Based on Vortex Identification Methods
,”
J. Therm. Sci.
,
31
(
1
), pp.
35
46
.10.1007/s11630-022-1547-3
31.
Aref
,
P.
,
Ghoreyshi
,
M.
,
Jirasek
,
A.
, and
Satchell
,
M.
,
2018
, “
CFD Validation and Flow Control of RAE-M2129 S-Duct Using CREATE-AV Kestrel Simulation Tools
,”
AIAA
Paper No. 2018-1512.10.2514/6.2018-1512
32.
Dudzinski
,
T. J.
, and
Krause
,
L. N.
,
1969
, “
Flow-Direction Measurement With Fixed-Position Probes in Subsonic Flow Over a Range of Reynolds Numbers
,” National Aerospace Instrumentation Symposium, Las Vegas, NV, May 1, Paper No.
19690055118
.https://ntrs.nasa.gov/citations/19690055118
33.
Treaster
,
A. L.
, and
Yocum
,
A. M.
,
1979
, “
The Calibration and Application of Five-Hole Probes
,”
Instrum. Soc. Am. Trans.
,
18
(
3
), pp.
23
34
.10.21236/ada055870
34.
Zilliac
,
G. G.
,
1993
, “
Modelling, Calibration, and Error Analysis of Seven-Hole Pressure Probes
,”
Exp. Fluids
,
14
(
1–2
), pp.
104
120
.10.1007/BF00196994
35.
Paul
,
A. R.
,
Upadhyay
,
R. R.
, and
Jain
,
A.
,
2011
, “
A Novel Calibration Algorithm for Five-Hole Pressure Probe
,”
Int. J. Eng., Sci. Technol.
,
3
(
2
), pp.
89
95
.10.4314/ijest.v3i2.68136
36.
Liu
,
B.
,
Qiu
,
Y.
,
An
,
G.
, and
Yu
,
X.
,
2020
, “
Utilization of Zonal Method for Five-Hole Probe Measurements of Complex Axial Compressor Flows
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061504
.10.1115/1.4046111
37.
Berens
,
T. M.
,
Delot
,
A.-L.
,
Chevalier
,
M.
, and
Muijden
,
J. V.
,
2014
, “
Numerical Simulations for High Offset Intake Diffuser Flows
,”
AIAA
Paper No.
2014
0371
.10.2514/6.2014-0371
You do not currently have access to this content.