Abstract

This paper explores the viability of established criteria to design centrifugal compressor stages that operate CO2 close to the critical point. The work is split into two complementary studies. At first, several stage configurations are generated by varying characteristic design parameters, such as the inlet and outlet flow coefficient, work coefficient, and stage Mach number. Then, three selected configurations are optimized with a surrogate-assisted evolutionary strategy to refine specific geometrical parameters, which control the meridional shape and splitter location. The stage aerodynamics and performance are assessed with a validated RANS solver based on the homogeneous equilibrium assumption for the two-phase mixture. One of the key findings of the parametric studies is that designing a stage with a flow coefficient smaller than that suggested by design practices prevents the occurrence of two-phase flows. The onset of a secondary phase at the impeller intake alters the fluid compressibility, producing density gradients across saturated condition that can cause flow separation. Such separation occurs for liquid-like CO2 but not for vapor-like CO2, implying that consolidated design rules can apply to the latter case notwithstanding the presence of condensing flows. Shape optimizations reveal that modest efficiency improvements can be gained by changing the meridional channel and splitter location. Moreover, the optimization problem is highly multimodal, as more than 30 different geometries can yield equivalent design efficiency. As a side effect of the optimization, the rangeability is significantly modified. Specifically, increasing the inlet slope angle of the shroud contour extends the operating range at high flow rates but reduces it at low flow rates. Therefore, this geometrical parameter can be controlled to adjust the stage rangeability without compromising design efficiency.

References

1.
Astolfi
,
M.
,
Alfani
,
D.
,
Lasala
,
S.
, and
Macchi
,
E.
,
2018
, “
Comparison Between ORC and CO2 Power Systems for the Exploitation of Low-Medium Temperature Heat Sources
,”
Energy
,
161
, pp.
1250
1261
.10.1016/j.energy.2018.07.099
2.
Marion
,
J.
,
Kutin
,
M.
,
McClung
,
A.
,
Mortzheim
,
J.
, and
Ames
,
R.
,
2019
, “
The STEP 10 MWe sCO2 Pilot Plant Demonstration
,”
ASME
Paper No. GT2019-91917. 10.1115/GT2019-91917
3.
Baltadjiev
,
N. D.
,
Lettieri
,
C.
, and
Spakovszky
,
Z. S.
,
2015
, “
An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors
,”
ASME J. Turbomach.
,
137
(
9
), p.
091003
.10.1115/1.4029616
4.
Lettieri
,
C.
,
Yang
,
D.
, and
Spakovszky
,
Z.
,
2015
, “
An Investigation of Condensation Effects in Supercritical Carbon Dioxide Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
082602
.10.1115/1.4029577
5.
Hosangadi
,
A.
,
Weathers
,
T.
,
Liu
,
J.
,
Pelton
,
R.
,
Wygant
,
K.
, and
Wilkes
,
J.
,
2022
, “
Numerical Predictions of Mean Performance and Dynamic Behavior of a 10 MWe SCO2 Compressor With Test Data Validation
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121019
.10.1115/1.4055532
6.
Toni
,
L.
,
Bellobuono
,
E. F.
,
Valente
,
R.
,
Persico
,
G.
,
Romei
,
A.
, and
Gaetani
,
P.
,
2022
, “
Computational and Experimental Assessment of a MW-Scale Supercritical CO2 Compressor Operating in Multiple Near-Critical Conditions
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101015
.10.1115/1.4055364
7.
Cho
,
S. K.
,
Bae
,
S. J.
,
Jeong
,
Y.
,
Lee
,
J.
, and
Lee
,
J. I.
,
2019
, “
Direction for High-Performance Supercritical CO2 Centrifugal Compressor Design for Dry Cooled Supercritical CO2 Brayton Cycle
,”
Appl. Sci.
,
9
(
19
), p.
4057
.10.3390/app9194057
8.
Hacks
,
A.
,
Schuster
,
S.
,
Dohmen
,
H. J.
,
Benra
,
F. K.
, and
Brillert
,
D.
,
2018
, “
Turbomachine Design for Supercritical Carbon Dioxide Within the sCO2-HeRo.eu Project
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121017
.10.1115/1.4040861
9.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
,
ASME Press
,
New York
.
10.
Casey
,
M.
, and
Robinson
,
C.
,
2013
, “
A Method to Estimate the Performance Map of a Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
135
(
2
), p.
021034
.10.1115/1.4006590
11.
Pelton
,
R.
,
Jung
,
S.
,
Allison
,
T.
, and
Smith
,
N.
,
2018
, “
Design of a Wide-Range Centrifugal Compressor Stage for Supercritical CO2 Power Cycles
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
092602
.10.1115/1.4039835
12.
Lettieri
,
C.
,
Baltadjiev
,
N.
,
Casey
,
M.
, and
Spakovszky
,
Z.
,
2014
, “
Low-Flow-Coefficient Centrifugal Compressor Design for Supercritical CO2
,”
ASME J. Turbomach.
,
136
(
8
), p.
081008
.10.1115/1.4026322
13.
Saxena
,
S.
,
Mallina
,
R.
,
Moraga
,
F.
, and
Hofer
,
D.
,
2017
, “
Numerical Approach for Real Gas Simulations: Part II – Flow Simulation for Supercritical CO2 Centrifugal Compressor
,”
ASME
Paper No. GT2017-63149.10.1115/GT2017-63149
14.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
15.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution - A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
16.
Casey
,
M.
, and
Robinson
,
C.
,
2021
,
Radial Flow Turbocompressors: Design, Analysis, and Applications
,
Cambridge University Press
, Cambridge, UK.
17.
Romei
,
A.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2021
, “
Design and Off-Design Analysis of a Highly Loaded Centrifugal Compressor for sCO2 Applications Operating in Near-Critical Conditions
,”
The Fourth European sCO2 Conference for Energy Systems
, Virtual event, pp.
257
266
.10.17185/duepublico/73969
18.
Lettieri
,
C.
,
Paxson
,
D.
,
Spakovszky
,
Z.
, and
Bryanston-Cross
,
P.
,
2018
, “
Characterization of Nonequilibrium Condensation of Supercritical Carbon Dioxide in a de Laval Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041701
.10.1115/1.4038082
19.
Romei
,
A.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2022
, “
Computational Fluid-Dynamic Investigation of a Centrifugal Compressor With Inlet Guide Vanes for Supercritical Carbon Dioxide Power Systems
,”
Energy
,
255
, p.
124469
.10.1016/j.energy.2022.124469
20.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
21.
Fenghour
,
A.
,
Wakeham
,
W.
, and
Vesovic
,
V.
,
1998
, “
The Viscosity of Carbon Dioxide
,”
J. Phys. Chem. Ref. Data
,
27
(
1
), pp.
31
44
.10.1063/1.556013
22.
Scalabrin
,
G.
,
Marchi
,
P.
,
Finezzo
,
F.
, and
Span
,
R.
,
2006
, “
A Reference Multiparameter Thermal Conductivity Equation for Carbon Dioxide With an Optimized Functional Form
,”
J. Phys. Chem. Ref. Data
,
35
(
4
), pp.
1549
1575
.10.1063/1.2213631
23.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
24.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No.
1989
366
.10.2514/6.1989-366
25.
Romei
,
A.
,
Persico
,
G.
,
Gaetani
,
P.
,
Bellobuono
,
E. F.
,
Toni
,
L.
, and
Valente
,
R.
,
2023
, “
Design and Computational Assessment of a Supercritical CO2 Compressor for Waste Heat Recovery Applications
,”
The Fifth European sCO2 Conference for Energy Systems
, Prague, Czech Republic, Mar. 14–16, pp.
1
9
.10.17185/duepublico/77332
26.
Celik
,
I.
,
Ghia
,
U.
,
Roache
,
P.
,
Freitas
,
C.
,
Coleman
,
H.
, and
Raad
,
P.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
27.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.10.1115/1.3144162
28.
Adams
,
B. M.
,
Ebeida
,
M. S.
,
Eldred
,
M. S.
,
Jakeman
,
J. D.
,
Swiler
,
L. P.
,
Stephens
,
J. A.
,
Vigil
,
D. M.
,
Wildey
,
T. M.
,
Bohnhoff
,
W. J.
,
Eddy
,
J. P.
,
Hu
,
K. T.
,
Dalbey
,
K. R.
,
Bauman
,
L. E.
, and
Hough
,
P. D.
,
2017
, “
Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis (Version 6.7)
,” Sandia Report No. SAND2020-12495.
29.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning
,
MIT Press
, Cambridge, MA.
You do not currently have access to this content.