Abstract

Given the stringent emission regulations of aircraft engines, the trend in the aero industry is toward developing leaner combustion systems, which are prone to produce combustion instabilities. Hybrid methods of simultaneous acoustics and fluid dynamics simulations offer an elegant solution for the numerical prediction of these instabilities, taking advantage of the appropriate discretization of relevant scales. The presented work employed a hybrid simulation framework to identify the thermoacoustic response of a practically relevant configuration. The fluid dynamics were described using a computational fluid dynamics solver employing the low Mach formulation of the Navier–Stokes equations, while the acoustics were simulated using a computational aeroacoustics solver employing the acoustic perturbation equations. The coupling was implemented to exchange information between both solvers during runtime. The considered real-life configuration was designed to investigate the thermoacoustic behavior of realistic gas turbine injectors. It is acoustically excited to characterize the given injector via the flame transfer function approach under controlled operating conditions. The computational fluid dynamics simulation results were postprocessed to obtain the acoustic behavior of the combustor. The reacting scattering matrix was constructed and then compared to the experimental reference, both obtained using the multimicrophone method. Finally, two different postprocessing approaches were used to calculate the flame transfer function and discuss the applied hybrid computation method. This work demonstrated that the hybrid method can capture general features of the flame response of a complex three-dimensional combustion system.

References

1.
European Commission and Directorate-General for Mobility and Transport and Directorate-General for Research and Innovation
,
2012
,
Flightpath 2050: Europe's Vision for Aviation: Maintaining Global Leadership and Serving Society's Needs
,
Publications Office
, Luxembourg.
2.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
CRC Press
, Boca Raton, FL.
3.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2006
,
Combustion Instabilities in Gas Turbine Engines
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
4.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.10.1016/j.proci.2014.08.016
5.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
1999
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME
Paper No. 99-GT-133.10.1115/99-GT-133
6.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
Paper No. GT2004-53831.10.1115/GT2004-53831
7.
Bui
,
T. P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2007
, “
Acoustic Perturbation Equations for Reacting Flows to Compute Combustion Noise
,”
Int. J. Aeroacoust.
,
6
(
4
), pp.
335
355
.10.1260/147547207783359468
8.
Meindl
,
M.
,
Merk
,
M.
,
Fritz
,
F.
, and
Polifke
,
W.
,
2019
, “
Determination of Acoustic Scattering Matrices From Linearized Compressible Flow Equations With Application to Thermoacoustic Stability Analysis
,”
J. Theor. Comput. Acoust.
,
27
(
03
), p.
1850027
.10.1142/S2591728518500275
9.
Klewer
,
C.
,
Ketelheun
,
A.
, and
Janicka
,
J.
,
2011
, “
Numerical Analysis of Thermoacoustic Instabilities Using LES and Computational Aeroacoustics
,”
Z. Für Physikalische Chem.
,
225
(
11–12
), pp.
1393
1403
.10.1524/zpch.2011.0186
10.
Gikadi
,
J.
,
Ullrich
,
W. C.
,
Sattelmayer
,
T.
, and
Turrini
,
F.
,
2013
, “
Prediction of the Acoustic Losses of a Swirl Atomizer Nozzle Under Non-Reactive Conditions
,”
ASME
Paper No. GT2013-95449.10.1115/GT2013-95449
11.
Andreini
,
A.
,
Facchini
,
B.
,
Giusti
,
A.
, and
Turrini
,
F.
,
2014
, “
Assessment of Flame Transfer Function Formulations for the Thermoacoustic Analysis of Lean Burn Aero-Engine Combustors
,”
Energy Procedia
,
45
, pp.
1422
1431
.10.1016/j.egypro.2014.01.149
12.
Ullrich
,
W.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
Lackhove
,
K.
,
Sadiki
,
A.
,
Fischer
,
A.
, and
Staufer
,
M.
,
2018
, “
Combustion Noise Prediction Using Linearized Navier–Stokes Equations and Large-Eddy Simulation Sources
,”
J. Propul. Power
,
34
(
1
), pp.
198
212
.10.2514/1.B36428
13.
Polifke
,
W.
,
Poncet
,
A.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics
,”
J. Sound Vib.
,
245
(
3
), pp.
483
510
.10.1006/jsvi.2001.3594
14.
Föller
,
S.
, and
Polifke
,
W.
,
2012
, “
Identification of Aero-Acoustic Scattering Matrices From Large Eddy Simulation. Application to a Sudden Area Expansion of a Duct
,”
J. Sound Vib.
,
331
(
13
), pp.
3096
3113
.10.1016/j.jsv.2012.01.004
15.
Gentemann
,
A. M.
,
2006
, “
Identifikation Von Akustischen Transfermatrizen Und Flammenfrequenzgängen Mittels Strömungssimulation
,” Ph.D. dissertation,
Technische Universität München
,
München, Germany
.
16.
Ewert
,
R.
, and
Schröder
,
W.
,
2003
, “
Acoustic Perturbation Equations Based on Flow Decomposition Via Source Filtering
,”
J. Comput. Phys.
,
188
(
2
), pp.
365
398
.10.1016/S0021-9991(03)00168-2
17.
Bui
,
T. P.
,
Schröder
,
W.
,
Meinke
,
M.
,
Shalaby
,
H.
, and
Thévenin
,
D.
,
2006
, “
Source Term Evaluation of the APE-RF System Using DNS Data
,”
Proceedings of the European Conference on Computational Fluid Dynamics
, Egmond aan Zee, The Netherlands, Sept. 5–8.10.2514/6.2006-2678
18.
Geiser
,
G.
,
Nawroth
,
H.
,
Hosseinzadeh
,
A.
,
Zhang
,
F.
,
Bockhorn
,
H.
,
Habisreuther
,
P.
,
Janicka
,
J.
, et al.,
2014
, “
Thermoacoustics of a Turbulent Premixed Flame
,”
AIAA
Paper No. 2014-2476.10.2514/6.2014-2476
19.
Klenke
,
T.
,
Presti
,
F. L.
,
Lackhove
,
K.
,
di Mare
,
F.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2017
, “
Two-Way Hybrid LES/CAA Approach Including Acoustic Feedback Loop for the Prediction of Thermoacoustic Instabilities in Technical Combustors
,”
ASME
Paper No. GT2017-63271.10.1115/GT2017-63271
20.
Lackhove
,
K.
,
2018
, “
Hybrid Noise Simulation for Enclosed Configurations
,”
Ph.D. dissertation
,
Technische Universität Darmstadt
,
Darmstadt, Germany
.https://tuprints.ulb.tu-darmstadt.de/7611/
21.
Reinhardt
,
H.
,
Alanyalıoğlu
,
Ç.
,
Fischer
,
A.
,
Lahiri
,
C.
, and
Hasse
,
C.
,
2023
, “
A Hybrid, Runtime Coupled Incompressible CFD-CAA Method for Analysis of Thermoacoustic Instabilities
,”
ASME J. Eng. Gas Turbines Power
,
145
(
3
), p.
031003
.10.1115/1.4055666
22.
Anand
,
M. S.
,
Eggels
,
R. L. G. M.
,
Staufer
,
M.
,
Zedda
,
M.
, and
Zhu
,
J.
,
2013
, “
An Advanced Unstructured-Grid Finite Volume Design System for Gas Turbine Combustion Analysis
,”
ASME
Paper No. GTINDIA2013-3537.10.1115/GTINDIA2013-3537
23.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow, Turbul. Combust.
,
85
(
1
), pp.
113
138
.10.1007/s10494-010-9264-5
24.
van Oijen
,
J. A.
, and
de Goey
,
P.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
25.
Somers, B.,
1994
, “The Simulation of Flat Flames With Detailed and Reduced Chemical Models,”
Ph.D. dissertation
, Eindhoven University of Technology, Eindhoven, The Netherlands.10.6100/IR420430
26.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer
, Berlin.
27.
Cantwell
,
C. D.
,
Moxey
,
D.
,
Comerford
,
A.
,
Bolis
,
A.
,
Rocco
,
G.
,
Mengaldo
,
G.
,
de Grazia
,
D.
, et al.,
2015
, “
Nektar++: An Open-Source Spectral/hp Element Framework
,”
Comput. Phys. Commun.
,
192
, pp.
205
219
.10.1016/j.cpc.2015.02.008
28.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
,
2005
,
Spectral/hp Element Methods for Computational Fluid Dynamics
,
Oxford University Press
, Oxford, UK.
29.
Quémerais
,
E.
,
2018
, “
La Bibliothèque de Couplage CWIPI — Coupling With Interpolation Parallel Interface
,” accessed Sept. 8, 2020, https://w3.onera.fr/cwipi/bibliotheque-couplage-cwipi
30.
Lackhove
,
K.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2017
, “
Efficient Three Dimensional Time-Domain Combustion Noise Simulation of a Premixed Flame Using Acoustic Perturbation Equations and Incompressible LES
,”
ASME
Paper No. GT2017-63050.10.1115/GT2017-63050
31.
Fischer
,
A.
,
Lahiri
,
C.
, and
Dörr
,
T.
,
2018
, “
Thermoakustik Mager Betriebener Brennkammern - Untersuchungen Am SCARLET Prüfstand
,”
16. Statusseminar Der AG Turbo - Tagungsband
,
Wissenschaftliche Koordinierungsstelle AG Turbo
, Köln, Germany.
32.
Fischer
,
A.
, and
Lahiri
,
C.
,
2021
, “
Ranking of Aircraft Fuel-Injectors Regarding Low Frequency Thermoacoustics Based on an Energy Balance Method
,”
ASME
Paper No. GT2021-59561.10.1115/GT2021-59561
33.
Chin
,
J. S.
, and
Lefebvre
,
A. H.
,
1983
, “
Steady-State Evaporation Characteristics of Hydrocarbon Fuel Drops
,”
AIAA J.
,
21
(
10
), pp.
1437
1443
.10.2514/3.8264
34.
Newman
,
D. J.
,
1965
, “
An L1 Extremal Problem for Polynomials
,”
Proc. Am. Math. Soc.
,
16
(
6
), p.
1287
.10.2307/2035916
35.
Alanyal Iolu
,
Ç.
,
Reinhardt
,
H.
,
Fischer
,
A.
,
Lahiri
,
C.
, and
Hasse
,
C.
,
2022
, “
Acoustic Scattering Behaviour of an Aero-Engine Injector: Numerical Investigation Using Compressible CFD and CAA
,”
ASME
Paper No. GT2022-82901.10.1115/GT2022-82901
36.
Lahiri
,
C.
,
2014
, “
Acoustic Performance of Bias Flow Liners in Gas Turbine Combustors
,”
Doctoral thesis
,
Technische Universität Berlin, Fakultät V - Verkehrs- und Maschinensysteme
,
Berlin, Germany
.10.14279/depositonce-4270
You do not currently have access to this content.