Abstract

Closed Joule–Brayton thermodynamic cycles working with carbon dioxide in supercritical conditions (sCO2) are presently receiving great attention, for their multiple attractive aspects: high energy conversion efficiency, compact size, flexibility of operation, and integration with energy storage systems. These features make the sCO2 technology interesting for several energy and industrial sectors, including renewable sources and waste heat recovery. A further promising area of application of sCO2 systems is bottoming gas turbines in combined cycles installed in off-shore platforms, where the lack of space complicates the application of steam Rankine cycles. The use of steam implies large-scale components and demands for large space availability for the plant installation; in such context, the combination of gas turbines with sCO2 cycles could open the way for developing novel combined cycles, which could be attractive for all the sectors which might take advantage from the footprint savings, the enhanced flexibility, and the fast dynamics of sCO2 systems. In this work, we investigate the thermodynamic potential of combining sCO2 cycles with an existing gas turbine for off-shore applications. We consider a midsize (25 MW) gas turbine available on the market and perform a series of thermodynamic optimizations of the sCO2 bottoming cycle to maximize the exploitation of the heat discharged by the gas turbine. We analyze four alternative configurations and include realistic technical constraints, evaluated by leveraging on the most recent technical outcomes from ongoing sCO2 research projects. A comparison is also proposed with a state-of-the-art steam Rankine cycle, in terms of system efficiency and footprint of the largest components. This study clarifies the advantages and challenges of applying sCO2 in combination with gas turbines, and it confirms the relevance of sCO2 systems for off-shore applications, calling for further technical studies in the field.

References

1.
Amaechi
,
C. V.
,
Reda
,
A.
,
Butler
,
H. O.
,
Ja'e
,
I. A.
, and
An
,
C.
,
2022
, “
Review on Fixed and Floating Offshore Structures. Part I: Types of Platforms With Some Applications
,”
J. Mar. Sci. Eng.
,
10
(
8
), p.
1074
.10.3390/jmse10081074
2.
Nguyen
,
T. V.
,
Voldsund
,
M.
,
Breuhaus
,
P.
, and
Elmegaard
,
B.
,
2016
, “
Energy Efficiency Measures for Offshore Oil and Gas Platforms
,”
Energy
,
117
, pp.
325
340
.10.1016/j.energy.2016.03.061
3.
Voldsund
,
M.
,
Reyes-Lúa
,
A.
,
Fu
,
C.
,
Ditaranto
,
M.
,
Neksa
,
P.
,
Mazzetti
,
M. J.
,
Brekke
,
O.
,
Bindingsbø
,
A. U.
,
Grainger
,
D.
, and
Pettersen
,
J.
,
2023
, “
Low Carbon Power Generation for Offshore Oil and Gas Production
,”
Energy Convers. Manage.: X
,
17
, p.
100347
.10.1016/j.ecmx.2023.100347
4.
Mazzetti
,
M. J.
,
Neksa
,
P.
,
Walnum
,
H. T.
, and
Hemmingsen
,
A. K. T.
,
2014
, “
Energy-Efficient Technologies for Reduction of Offshore CO2 Emissions
,”
Oil Gas Facil.
,
3
(
01
), pp.
89
96
.10.2118/169811-PA
5.
Nord
,
L. O.
, and
Bolland
,
O.
,
2012
, “
Steam Bottoming Cycles Offshore – Challenges and Possibilities
,”
J. Power Technol.
,
92
, pp.
201
207
.https://papers.itc.pw.edu.pl/index.php/JPT/article/view/346
6.
Nord
,
L. O.
, and
Bolland
,
O.
,
2013
, “
Design and Off-Design Simulations of Combined Cycles for Offshore Oil and Gas Installations
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
85
91
.10.1016/j.applthermaleng.2013.01.022
7.
Nami
,
H.
,
Ertesvag
,
I. S.
,
Agromayor
,
R.
,
Riboldi
,
L.
, and
Nord
,
L. O.
,
2018
, “
Gas Turbine Exhaust Gas Heat Recovery by Organic Rankine Cycles (ORC) for Offshore Combined Heat and Power Applications—Energy and Exergy Analysis
,”
Energy
,
165
, pp.
1060
1071
.10.1016/j.energy.2018.10.034
8.
Matveenko
,
V. T.
,
Ocheretyanyi
,
V. A.
, and
Andriets
,
A. G.
,
2018
, “
Compound-Cycle Gas-Turbine Engines for Offshore Oil and Gas Platforms
,”
Chem. Pet. Eng.
,
53
(
9–10
), pp.
584
591
.10.1007/s10556-018-0385-3
9.
Huck
,
P.
,
Freund
,
S.
,
Lehar
,
M.
, and
Peter
,
M.
,
2016
, “
Performance Comparison of Supercritical CO2 Versus Steam Bottoming Cycles for Gas Turbine Combined Cycle Applications
,”
Proceedings of the Fifth Supercritical CO2 Power Cycles Symposium
,
San Antonio, TX
, Mar. 28–31, p.
92
.https://sco2symposium.com/papers2016/SystemConcepts/092paper.pdf
10.
CO2OLHEAT
, 2023, “
Supercritical CO2 Power Cycles Demonstration in Operational Environment Locally Valorising Industrial Waste Heat
,” Horizon 2020 Funded Project, Belgium, accessed Sept. 14, 2023, https://cordis.europa.eu/project/id/101022831
11.
Zhou
,
A.
,
Li
,
X.
,
Ren
,
X.
, and
Gu
,
C.
,
2020
, “
Improvement Design and Analysis of a Supercritical CO2/Transcritical CO2 Combined Cycle for Offshore Gas Turbine Waste Heat Recovery
,”
Energy
,
210
, p.
118562
.10.1016/j.energy.2020.118562
12.
ETN Global, 2023, “
ETN
,” ETN Global, Brussels, Belgium, accessed Sept. 14, 2023, https://etn.global/gas-turbine-products/pgt25-g4/
13.
Allison
,
D. O.
,
Polynomial Approximations of Thermodynamic Properties of Arbitrary Gas Mixtures Over Wide Pressure and Density Ranges
,
Langley Research Center
,
Humpton, VA
.
14.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,
National Institute of Standards and Technology, Standard Reference Data Program
,
Gaithersburg, MD
.
15.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple‐Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
16.
Alfani
,
D.
,
Astolfi
,
M.
,
Binotti
,
M.
, and
Silva
,
P.
,
2021
, “
Part-Load Strategy Definition and Preliminary Annual Simulation for Small Size sCO2-Based Pulverized Coal Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091026
.10.1115/1.4051003
17.
Alfani
,
D.
,
Astolfi
,
M.
,
Binotti
,
M.
,
Campanari
,
S.
,
Casella
,
F.
, and
Silva
,
P.
,
2019
, “
Multi Objective Optimization of Flexible Supercritical CO2 Coal-Fired Power Plants
,”
ASME
Paper No. GT2019-91789.10.1115/GT2019-91789
18.
Alfani
,
D.
,
Neises
,
T.
,
Astolfi
,
M.
,
Binotti
,
M.
, and
Silva
,
P.
,
2022
, “
Techno-Economic Analysis of CSP Incorporating sCO2 Brayton Power Cycles: Trade-Off Between Cost and Performance
,”
AIP Conf. Proc.
,
2445
, p.
090001
.10.1063/5.0086353
19.
Alfani
,
D.
,
Astolfi
,
M.
,
Binotti
,
M.
,
Silva
,
P.
, and
Macchi
,
E.
,
2020
, “
Off-Design Performance of CSP Plant Based on Supercritical CO2 Cycles
,”
AIP Conf. Proc.
,
2303
, p.
130001
.10.1063/5.0029801
20.
Persico
,
G.
,
Gaetani
,
P.
,
Romei
,
A.
,
Toni
,
L.
,
Bellobuono
,
E.
, and
Valente
,
R.
,
2021
, “
Implications of Phase Change on the Aerodynamics of Centrifugal Compressors for Supercritical Carbon Dioxide Applications
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041007
.10.1115/1.4049924
21.
Toni
,
L.
,
Bellobuono
,
E. F.
,
Valente
,
R.
,
Romei
,
A.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2022
, “
Computational and Experimental Assessment of a MW-Scale Supercritical CO2 Compressor Operating in Multiple Near-Critical Conditions
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101015
.10.1115/1.4055364
22.
Romei
,
A.
,
Gaetani
,
P.
,
Giostri
,
A.
, and
Persico
,
G.
,
2020
, “
The Role of Turbomachinery Perfomance in the Optimization of Supercritical Carbon Dioxide Power Systems
,”
ASME J. Turbomach.
,
142
(
7
), p.
071001
.10.1115/1.4046182
23.
Weiland
,
N.
, and
Thimsen
,
D.
,
2016
, “
A Practical Look at Assumptions and Constraints for Steady State Modeling of sCO2 Brayton Power Cycles
,”
Proceedings of the Fifth Supercritical CO2 Power Cycles Symposium
,
San Antonio, TX
, Mar. 28–31, p.
102
.https://sco2symposium.com/papers2016/SystemModeling/102paper.pdf
24.
Alfani
,
D.
,
Binotti
,
M.
,
Macchi
,
E.
,
Silva
,
P.
, and
Astolfi
,
M.
,
2021
, “
sCO2 Power Plants for Waste Heat Recovery: Design Optimization and Part-Load Operation Strategies
,”
Appl. Therm. Eng.
,
195
, p.
117013
.10.1016/j.applthermaleng.2021.117013
25.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
,
12
(
1
), pp.
3
22
.10.1016/0735-1933(85)90003-X
26.
Hoopes
,
K.
,
Sánchez
,
D. T.
, and
Crespi
,
F.
,
2016
, “
A New Method for Modelling Off-Design Performance of sCO2 Heat Exchangers Without Specifying Detailed Geometry
,”
Proceedings of the Fifth sCO2 Power Cycles Symposium
,
San Antonio, TX
, Mar. 28–31, p.
13
.https://sco2symposium.com/papers2016/HeatExchanger/013pres.pdf
27.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
,
90
(
3
), pp.
287
295
.10.1115/1.3609190
28.
Mazzetti
,
M. J.
,
Hagen
,
B. A. L.
,
Skaugen
,
G.
,
Lindqvist
,
K.
,
Lundberg
,
S.
, and
Kristensen
,
O. A.
,
2021
, “
Achieving 50% Weight Reduction of Offshore Steam Bottoming Cycles
,”
Energy
,
230
, p.
120634
.10.1016/j.energy.2021.120634
You do not currently have access to this content.