Abstract

We investigate the effect of increasing levels of hydrogen enrichment on the nonlinear response and saturation of premixed bluff-body stabilized methane/hydrogen flames submitted to acoustic forcing. The thermal power is kept approximately constant to preserve the nozzle velocity while increasing the flame speed through hydrogen enrichment. The flame describing function (FDF) is measured for a fixed frequency and three hydrogen–methane blends ranging from 10% to 50% by power, corresponding to 25% to 75% by volume. We show that when the flame is forced at the same frequency at similar power and bulk velocities, increasing levels of hydrogen enrichment increase the saturation amplitude of the flame. To provide insight into the flame dynamics responsible for the change in the global nonlinear response and saturation amplitude, the flames were investigated using high-speed imaging in combination with OH planar laser-induced fluorescence (OH-PLIF) at a range of forcing amplitudes. At lower hydrogen concentrations, the flame is stabilized along the inner shear layer and saturation in the heat release rate (HRR) occurs at lower forcing amplitudes due to large-scale flame–vortex interactions causing flame annihilation as observed in several previous studies. At increased levels of hydrogen enrichment, distinctly different flame dynamics are observed. In these cases, the flame accelerates and propagates across to the outer shear layer, which acts to suppress large-scale flame annihilation during roll-up of both the inner and outer shear layers. This results in a coherent increase in flame surface area with forcing amplitudes significantly increasing the saturation amplitude of the flame. These results show that high levels of hydrogen increase the amplitude response to acoustic forcing leading to higher saturation amplitudes. This suggests that substituting natural gas with hydrogen in gas turbines increases the risk of much higher limit-cycle amplitudes if self-excited instabilities occur.

References

1.
Hochgreb
,
S.
,
2022
, “
How Fast Can We Burn, 2.0
,”
Proc. Combust. Inst.
,
39
(
2
), p.
2077
.10.1016/j.proci.2022.06.029
2.
Korol
,
G.
,
Kumar
,
R.
, and
Bowles
,
E.
,
1993
, “
Burning Velocities of Hydrogen-Air Mixtures
,”
Combust Flame
,
94
(
3
), pp.
330
340
.10.1016/0010-2180(93)90078-H
3.
Boushaki
,
T.
,
Dhué
,
Y.
,
Selle
,
L.
,
Ferret
,
B.
, and
Poinsot
,
T.
,
2012
, “
Effects of Hydrogen and Steam Addition on Laminar Burning Velocity of Methane–Air Premixed Flame: Experimental and Numerical Analysis
,”
Int. J. Hydrog. Energy
,
37
(
11
), pp.
9412
9422
.10.1016/j.ijhydene.2012.03.037
4.
Beerer
,
D.
,
Mcdonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R. K.
,
2013
, “
Flashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low-Swirl Injector at Elevated Pressures and Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
) p.
031502
.10.1115/1.4025636
5.
Rieth
,
M.
,
Gruber
,
A.
,
Williams
,
F. A.
, and
Chen
,
J. H.
,
2022
, “
Enhanced Burning Rates in Hydrogen-Enriched Turbulent Premixed Flames by Diffusion of Molecular and Atomic Hydrogen
,”
Combust Flame
,
239
, p.
111740
.10.1016/j.combustflame.2021.111740
6.
Berger
,
L.
,
Attili
,
A.
, and
Pitsch
,
H.
,
2022
, “
Synergistic Interactions of Thermodiffusive Instabilities and Turbulence in Lean Hydrogen Flames
,”
Combust Flame
,
244
, p.
112254
.10.1016/j.combustflame.2022.112254
7.
Aguilar
,
J. G.
,
Æsøy
,
E.
, and
Dawson
,
J. R.
,
2022
, “
The Influence of Hydrogen on the Stability of a Perfectly Premixed Combustor
,”
Combust Flame
,
245
, p.
112323
.10.1016/j.combustflame.2022.112323
8.
Æsøy
,
E.
,
Indlekofer
,
T.
,
Gant
,
F.
,
Cuquel
,
A.
,
Bothien
,
M. R.
, and
Dawson
,
J. R.
,
2022
, “
The Effect of Hydrogen Enrichment, Flame-Flame Interaction, Confinement, and Asymmetry on the Acoustic Response of a Model Can Combustor
,”
Combust Flame
,
242
, p.
112176
. 10.1016/j.combustflame.2022.112176
9.
Lee
,
T.
, and
Kim
,
K. T.
,
2020
, “
Combustion Dynamics of Lean Fully-Premixed Hydrogen-Air Flames in a Mesoscale Multinozzle Array
,”
Combust Flame
,
218
, pp.
234
246
.10.1016/j.combustflame.2020.04.024
10.
Kang
,
H.
, and
Kim
,
K. T.
,
2021
, “
Combustion Dynamics of Multi-Element Lean-Premixed Hydrogen-Air Flame Ensemble
,”
Combust Flame
,
233
, p.
111585
.10.1016/j.combustflame.2021.111585
11.
Lee
,
T.
, and
Kim
,
K. T.
,
2022
, “
High-Frequency Transverse Combustion Instabilities of Lean-Premixed Multislit Hydrogen-Air Flames
,”
Combust. Flame
,
238
, p.
111899
.10.1016/j.combustflame.2021.111899
12.
Yahou
,
T.
,
Dawson
,
J. R.
, and
Schuller
,
T.
,
2022
, “
Impact of Chamber Back Pressure on the Ignition Dynamics of Hydrogen Enriched Premixed Flames
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4641
4650
.10.1016/j.proci.2022.07.236
13.
Aniello
,
A.
,
Poinsot
,
T.
,
Selle
,
L.
, and
Schuller
,
T.
,
2022
, “
Hydrogen Substitution of Natural-Gas in Premixed Burners and Implications for Blow-Off and Flashback Limits
,”
Int. J. Hydrog. Energy
,
47
(
77
), pp.
33067
33081
.10.1016/j.ijhydene.2022.07.066
14.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
15.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
16.
European Turbine Network
,
2020
, “
Hydrogen and Gas Turbines: The Path Towards a Zero-Carbon Gas Turbine
,”
ETN Global
, Brussels, Belgium, Report.https://etn.global/wp-content/uploads/2020/01/ET NHydrogen-Gas-Turbines-report.pdf
17.
Beita
,
J.
,
Talibi
,
M.
,
Sadasivuni
,
S.
, and
Balachandran
,
R.
,
2021
, “
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
,”
Hydrogen
,
2
(
1
), pp.
33
57
.10.3390/hydrogen2010003
18.
Bothien
,
M. R.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2014
, “
A Novel Damping Device for Broadband Attenuation of Low-Frequency Combustion Pulsations in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041504
.10.1115/1.4025761
19.
Kim
,
K. T.
,
Lee
,
J.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041502
.10.1115/1.3204532
20.
Davis
,
D.
,
Therkelsen
,
P.
,
Littlejohn
,
D.
, and
Cheng
,
R.
,
2013
, “
Effects of Hydrogen on the Thermo-Acoustics Coupling Mechanisms of Low-Swirl Injector Flames in a Model Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3135
3143
.10.1016/j.proci.2012.05.050
21.
Shanbhogue
,
S. J.
,
Sanusi
,
Y.
,
Taamallah
,
S.
,
Habib
,
M.
,
Mokheimer
,
E.
, and
Ghoniem
,
A. F.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
22.
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Effect of Hydrogen Enrichment on the Dynamics of a Lean Technically Premixed Elevated Pressure Flame
,”
Combust Flame
,
225
, pp.
149
159
. Mar10.1016/j.combustflame.2020.10.033
23.
Mao
,
R.
,
Wang
,
J.
,
Lin
,
W.
,
Han
,
W.
,
Zhang
,
W.
, and
Huang
,
Z.
,
2022
, “
Effects of Flow-Flame Interactions on the Stabilization of Ultra-Lean Swirling CH4/H2/Air Flames
,”
Fuel
,
319
, p.
123619
.10.1016/j.fuel.2022.123619
24.
Guiberti
,
T. F.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.10.1016/j.proci.2014.06.016
25.
Schuller
,
T.
,
Poinsot
,
T.
, and
Candel
,
S.
,
2020
, “
Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions
,”
J. Fluid Mech.
,
894
, p.
P1
.10.1017/jfm.2020.239
26.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
27.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. A.
,
2021
, “
Acoustic-Convective Interference in Transfer Functions of Methane/Hydrogen and Pure Hydrogen Flames
,”
ASME J. Eng. Gas Turbines Power
, 143(12), p.121017.10.1115/1.4051960
28.
Ghani
,
A.
, and
Polifke
,
W.
,
2021
, “
Control of Intrinsic Thermoacoustic Instabilities Using Hydrogen Fuel
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6077
6084
.10.1016/j.proci.2020.06.151
29.
Casel
,
M.
, and
Ghani
,
A.
,
2023
, “
Analysis of the Flame Dynamics in Methane/Hydrogen Fuel Blends at Elevated Pressures
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4631
4640
.10.1016/j.proci.2022.07.211
30.
Lim
,
Z.
,
Li
,
J.
, and
Morgans
,
A. S.
,
2021
, “
The Effect of Hydrogen Enrichment on the Forced Response of CH4/H2/Air Laminar Flames
,”
Int. J. Hydrogen Energy
,
46
(
46
), pp.
23943
23953
.10.1016/j.ijhydene.2021.04.171
31.
Æsøy
,
E.
,
Nygård
,
H. T.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2022
, “
Tailoring the Gain and Phase of the Flame Transfer Function Through Targeted Convective-Acoustic Interference
,”
Combust. Flame
,
236
, p.
111813
.10.1016/j.combustflame.2021.111813
32.
Æsøy
,
E.
,
Jankee
,
G. K.
,
Yadala
,
S.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2023
, “
Suppression of Self-Excited Thermoacoustic Instabilities by Convective-Acoustic Interference
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4611
4620
.10.1016/j.proci.2022.08.033
33.
Park
,
D.
,
Lee
,
T.
, and
Kim
,
K. T.
,
2022
, “
Rotational Symmetry-Driven Modal Dynamics of High-Frequency Transverse Instabilities in a Lean-Premixed Multislit Hydrogen Combustor
,”
Combust. Flame
,
245
, p.
112356
.10.1016/j.combustflame.2022.112356
34.
Kang
,
H.
,
Lee
,
M.
, and
Kim
,
K. T.
,
2022
, “
Measurements of Self-Excited Instabilities and Nitrogen Oxides Emissions in a Multi-Element Lean-Premixed Hydrogen/Methane/Air Flame Ensemble
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4721
4729
.10.1016/j.proci.2022.07.258
35.
Indlekofer
,
T.
,
Ahn
,
B.
,
Kwah
,
Y. H.
,
Wiseman
,
S.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2021
, “
The Effect of Hydrogen Addition on the Amplitude and Harmonic Response of Azimuthal Instabilities in a Pressurized Annular Combustor
,”
Combust. Flame
,
228
, pp.
375
387
.10.1016/j.combustflame.2021.02.015
36.
Indlekofer
,
T.
,
Faure-Beaulieu
,
A.
,
Noiray
,
N.
, and
Dawson
,
J. R.
,
2021
, “
The Effect of Dynamic Operating Conditions on the Thermoacoustic Response of Hydrogen Rich Flames in an Annular Combustor
,”
Combust. Flame
,
223
, pp.
284
294
.10.1016/j.combustflame.2020.10.013
37.
Oztarlik
,
G.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2020
, “
Suppression of Instabilities of Swirled Premixed Flames With Minimal Secondary Hydrogen Injection
,”
Combust. Flame
,
214
, pp.
266
276
.10.1016/j.combustflame.2019.12.032
38.
Schuller
,
T.
,
Marragou
,
S.
,
Oztarlik
,
G.
,
Poinsot
,
T.
, and
Selle
,
L.
,
2022
, “
Influence of Hydrogen Content and Injection Scheme on the Describing Function of Swirled Flames
,”
Combust. Flame
,
240
, p.
111974
.10.1016/j.combustflame.2021.111974
39.
Laera
,
D.
,
Agostinelli
,
P. W.
,
Selle
,
L.
,
Cazères
,
Q.
,
Oztarlik
,
G.
,
Schuller
,
T.
,
Gicquel
,
L.
, and
Poinsot
,
T.
,
2021
, “
Stabilization Mechanisms of CH4 Premixed Swirled Flame Enriched With a Non-Premixed Hydrogen Injection
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6355
6363
.10.1016/j.proci.2020.06.378
40.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
, 615, pp.
139
167
.10.1017/S0022112008003613
41.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.10.1016/j.proci.2008.06.204
42.
O’Connor
,
J.
,
2022
, “
Understanding the Role of Flow Dynamics in Thermoacoustic Combustion Instability
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4583
4610
.10.1016/j.proci.2022.07.115
43.
Schadow
,
K. C.
, and
Gutmark
,
E.
,
1992
, “
Combustion Instability Related to Vortex Shedding in Dump Combustors and Their Passive Control
,”
Prog. Energy Combust. Sci.
,
18
(
2
), pp.
117
132
.10.1016/0360-1285(92)90020-2
44.
Balachandran
,
R.
,
Ayoola
,
B.
,
Kaminski
,
C.
,
Dowling
,
A.
, and
Mastorakos
,
E.
,
2005
, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
143
(
1–2
), pp.
37
55
.10.1016/j.combustflame.2005.04.009
45.
Bellows
,
B. D.
,
Bobba
,
M. K.
,
Forte
,
A.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T.
,
2007
, “
Flame Transfer Function Saturation Mechanisms in a Swirl-Stabilized Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3181
3188
.10.1016/j.proci.2006.07.138
46.
Bellows
,
B. D.
,
Bobba
,
M. K.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T.
,
2007
, “
Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
954
961
.10.1115/1.2720545
47.
Seybert
,
A. F.
, and
Ross
,
D. F.
,
1977
, “
Experimental Determination of Acoustic Properties Using a Two-Microphone Random-Excitation Technique
,”
J. Acoust.
,
61
(
5
), pp.
1362
1370
.10.1121/1.381403
48.
Æsøy
,
E.
,
2022
, “
The Effect of Hydrogen Enrichment on the Thermoacoustic Behaviour of Lean Premixed Flames
,”
Ph.D. thesis
, NTNU, Trondheim, Norway.https://hdl.handle.net/11250/2838552
49.
Higgins
,
B.
,
McQuay
,
M. Q.
,
Lacas
,
F.
,
Rolon
,
J.-C.
,
Darabiha
,
N.
, and
Candel
,
S.
,
2001
, “
Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed, Laminar Flames
,”
Fuel
,
80
(
1
), pp.
67
74
.10.1016/S0016-2361(00)00069-7
50.
Wiseman
,
S.
,
Gruber
,
A.
, and
Dawson
,
J. R.
,
2022
, “
Flame Transfer Functions for Turbulent, Premixed, Ammonia-Hydrogen-Nitrogen-Air Flames Submitted for Publication
,”
ASME J. Eng. Gas Turbines Power
, 145(3), p.
031015
.10.1115/1.4055754
51.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2012
, “
Cinematographic OH-PLIF Measurements of Two Interacting Turbulent Premixed Flames With and Without Acoustic Forcing
,”
Combust. Flame
,
159
(
3
), pp.
1109
1126
.10.1016/j.combustflame.2011.09.006
52.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2015
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.2.0
”.10.5281/zenodo.48735
53.
Kutkan
,
H.
,
Amato
,
A.
,
Campa
,
G.
,
Ghirardo
,
G.
,
Tay Wo Chong
,
L.
, and
Æsøy
,
E.
,
2022
, “
Modeling of Turbulent Premixed CH4/H2/Air Flames Including the Influence of Stretch and Heat Losses
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011020
.10.1115/1.4051989
54.
Garcia
,
A. M.
,
Bras
,
S. L.
, and
Polifke
,
W.
,
2022
, “
Effect of Hydrogen Addition on the Consumption Speed of Lean Premixed Laminar Methane Flames Exposed to Combined Strain and Heat Loss
,”
Combust. Theory Modell.
, 27(4), pp.
584
604
.10.1080/13647830.2023.2182235
55.
Wiseman
,
S.
,
Rieth
,
M.
,
Gruber
,
A.
,
Dawson
,
J. R.
, and
Chen
,
J. H.
,
2021
, “
A Comparison of the Blow-Out Behavior of Turbulent Premixed Ammonia/Hydrogen/Nitrogen-Air and Methane–Air Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2869
2876
.10.1016/j.proci.2020.07.011
56.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
RT Edwards, Inc
., Morningside, Australia.
57.
Zhang
,
J.
, and
Ratner
,
A.
,
2021
, “
Experimental Study of the Effects of Hydrogen Addition on the Thermoacoustic Instability in a Variable-Length Combustor
,”
Int. J. Hydrogen Energy
,
46
(
29
), pp.
16086
16100
.10.1016/j.ijhydene.2021.02.063
58.
Ghirardo
,
G.
,
Gant
,
F.
,
Boudy
,
F.
, and
Bothien
,
M. R.
,
2021
, “
Protection and Identification of Thermoacoustic Azimuthal Modes
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041021
.10.1115/1.4049909
59.
Lieuwen
,
T.
,
2021
,
Unsteady Combustor Physics
,
Cambridge University Press
, Cambridge, UK.
60.
Aydemir
,
E.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2012
, “
The Formation of Vortex Rings in a Strongly Forced Round Jet
,”
Exp. Fluids
,
52
(
3
), pp.
729
742
.10.1007/s00348-011-1110-6
You do not currently have access to this content.