Abstract

Conventional centralized power generation is increasingly transforming into a more distributed structure. The periodic power production that is created by the renewable production unit generates the need for small-scale heat and power units. One of the promising technologies which can assist flexible power grid is micro gas turbines (mGTs). Such engines are competent candidates for small-scale combined heat and power (CHP). mGTs, as compensators for demand fluctuations, are required to work on transient and part-load conditions, creating new research challenges. A complete characterization of their dynamic behavior through a real-time simulation tool is necessary to establish effective control systems. Moreover, the energy transition requires the conversion of conventional mGTs to more sophisticated high-efficient cycles with the addition of extra components (saturation unit, aftercooler, etc.). Consequently, a modular and computationally fast real-time tool offers an asset in the development of future cycles based on the mGT concept. This paper presents the development of a numerical in-house tool implemented in Python programing language for the performance prediction of the mGT. The fundamental target of our work is to achieve high fidelity of the simulated dynamic responses. The key benefit of this tool is the low complexity component modules. The model is validated with experimental results from the VUB T100 test rig. The code reproduces the experimental data well during steady-state and transient operations as the key cycle parameters present a deviation from the measurements within the range of 1.5%.

References

1.
Xiao
,
G.
,
Yang
,
T.
,
Liu
,
H.
,
Ni
,
D.
,
Ferrari
,
M. L.
,
Li
,
M.
,
Luo
,
Z.
,
Cen
,
K.
, and
Ni
,
M.
,
2017
, “
Recuperators for Micro Gas Turbines: A Review
,”
Appl. Energy
,
197
(
C
), pp.
83
99
.10.1016/j.apenergy.2017.03.095
2.
Caresana
,
F.
,
Pelagalli
,
L.
,
Comodi
,
G.
, and
Renzi
,
M.
,
2014
, “
Microturbogas Cogeneration Systems for Distributed Generation: Effects of Ambient Temperature on Global Performance and Components' Behavior
,”
Appl. Energy
,
124
(
C
), pp.
17
27
.10.1016/j.apenergy.2014.02.075
3.
Ismail
,
M.
,
Moghavvemi
,
M.
, and
Mahlia
,
T.
,
2013
, “
Current Utilization of Microturbines as a Part of a Hybrid System in Distributed Generation Technology
,”
Renewable Sustainable Energy Rev.
,
21
(
C
), pp.
142
152
.10.1016/j.rser.2012.12.006
4.
Kolanowski
,
B. F.
,
2004
,
Guide to Microturbines
,
Fairmont Press
,
Lilburn, GA; New York
.
5.
Comodi
,
G.
,
Renzi
,
M.
,
Caresana
,
F.
, and
Pelagalli
,
L.
,
2015
, “
Enhancing Micro Gas Turbine Performance in Hot Climates Through Inlet Air Cooling Vapour Compression Technique
,”
Appl. Energy
,
147
(
C
), pp.
40
48
.10.1016/j.apenergy.2015.02.076
6.
Duan
,
J.
,
Sun
,
L.
,
Wang
,
G.
, and
Wu
,
F.
,
2015
, “
Nonlinear Modeling of Regenerative Cycle Micro Gas Turbine
,”
Energy
,
91
, pp.
168
175
.10.1016/j.energy.2015.07.134
7.
Pepermans
,
G.
,
Driesen
,
J.
,
Haeseldonckx
,
D.
,
Belmans
,
R.
, and
D'haeseleer
,
W.
,
2005
, “
Distributed Generation: Definition, Benefits and Issues
,”
Energy Policy
,
33
(
6
), pp.
787
798
.10.1016/j.enpol.2003.10.004
8.
De Paepe
,
W.
,
Carrero
,
M. M.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2014
, “
Experimental Characterization of a t100 Micro Gas Turbine Converted to Full Humid Air Operation
,”
Energy Procedia
,
61
, pp.
2083
2088
.10.1016/j.egypro.2014.12.081
9.
MosayebNezhad
,
M.
,
Mehr
,
A.
,
Lanzini
,
A.
,
Misul
,
D.
, and
Santarelli
,
M.
,
2019
, “
Technology Review and Thermodynamic Performance Study of a Biogas-Fed Micro Humid Air Turbine
,”
Renewable Energy
,
140
, pp.
407
418
.10.1016/j.renene.2019.03.064
10.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Pascenti
,
M.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2018
, “
Experimental Dynamic Analysis on a T100 Microturbine Connected With Different Volume Sizes
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021701
.10.1115/1.4037754
11.
Calabria
,
R.
,
Chiariello
,
F.
,
Massoli
,
P.
, and
Reale
,
F.
,
2015
, “
CFD Analysis of Turbec T100 Combustor at Part Load by Varying Fuels
,”
ASME
Paper No. GT2015-43455.10.1115/GT2015-43455
12.
di Gaeta
,
A.
,
Reale
,
F.
,
Chiariello
,
F.
, and
Massoli
,
P.
,
2017
, “
A Dynamic Model of a 100 kW Micro Gas Turbine Fuelled With Natural Gas and Hydrogen Blends and Its Application in a Hybrid Energy Grid
,”
Energy
,
129
(
C
), pp.
299
320
.10.1016/j.energy.2017.03.173
13.
Traverso
,
A.
,
2005
, “
TRANSEO Code for the Dynamic Performance Simulation of Micro Gas Turbine Cycles
,”
ASME
Paper No. GT2005-68101.10.1115/GT2005-68101
14.
Ghigliazza
,
F.
,
Traverso
,
A.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2009
, “
Micro Gas Turbine Real-Time Modeling: Test Rig Verification
,”
ASME
Paper No. GT2009-59124.10.1115/GT2009-59124
15.
Henke
,
M.
,
Monz
,
T.
, and
Aigner
,
M.
,
2017
, “
Introduction of a New Numerical Simulation Tool to Analyze Micro Gas Turbine Cycle Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
042601
.10.1115/1.4034703
16.
Blotenberg
,
W.
,
1993
, “
A Model for the Dynamic Simulation of a Two-Shaft Industrial Gas Turbine With Dry Low NOx Combustor
,”
ASME
Paper No. 93-GT-355.10.1115/93-GT-355
17.
Bettocchi
,
R.
,
Spina
,
P. R.
, and
Fabbri
,
F.
,
1996
, “
Dynamic Modeling of Single-Shaft Industrial Gas Turbine
,”
ASME
Paper No. 96-GT-332.10.1115/96-GT-332
18.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2015
, “
Transient Gas Turbine Performance Diagnostics Through Nonlinear Adaptation of Compressor and Turbine Maps
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091201
.10.1115/1.4029710
19.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Dumas
,
A.
,
2000
, “
Dynamic Modelling of Recuperative Gas Turbines
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
214
(
3
), pp.
213
225
.10.1243/0957650001538317
20.
Kim
,
M. J.
,
Kim
,
J. H.
, and
Kim
,
T. S.
,
2016
, “
Program Development and Simulation of Dynamic Operation of Micro Gas Turbines
,”
Appl. Therm. Eng.
,
108
, pp.
122
130
.10.1016/j.applthermaleng.2016.07.103
21.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
22.
Lagerström
,
G.
, and
Xie
,
M.
,
2002
, “
High Performance and Cost Effective Recuperator for Micro-Gas Turbines
,”
ASME
Paper No. GT2002-30402.10.1115/GT2002-30402
23.
McDonald
,
C. F.
,
2003
, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
,
23
(
12
), pp.
1463
1487
.10.1016/S1359-4311(03)00083-8
24.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Magnusson
,
J.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2017
, “
Experimental Characterisation of a Micro Humid Air Turbine: Assessment of the Thermodynamic Performance
,”
Appl. Therm. Eng.
,
118
, pp.
796
806
.10.1016/j.applthermaleng.2017.03.017
You do not currently have access to this content.