Abstract

The aerodynamic damping of a stator vane located in a rear stage of a high pressure compressor is evaluated at transonic flow conditions by numerical means. The results of a solution method based on temporal linearization around a steady RANS state are compared to results generated by relying on a state-of-the-art harmonic balance solver. It is found that the time-linearized method is not capable to reproduce the damping behavior in a sufficient manner for the majority of assessed nodal diameters. The limitations of the time-linearized method consisting of expansion around an imperfect steady RANS state, neglecting nonlinear contributions, and considering turbulence to be frozen at its steady-state are evaluated and quantified. Furthermore, the presence of unsteady content induced by shock wave boundary layer interaction can be identified by performing a full-annulus URANS simulation based on time-integration. For a limited range of nodal diameters, this shock boundary layer interaction locks in to the assessed flutter motion and affects the damping behavior substantially. It is demonstrated that the mechanism of the shock wave boundary layer interaction can be reproduced with harmonic balance in accordance with the time-integration method. Coupling the eigenmode of interest and the identified shock boundary layer interaction via the harmonic balance method allows us to predict the aerodynamic damping for the affected nodal diameters.

References

1.
Platzer
,
M. F.
, and
Carta
,
F. O.
,
1987
, “
AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines: Structural Dynamics and Aeroelasticity
,” AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines. North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development, Neuilly Sur Seine, France, Report No.
AGARD-AG-298
.https://apps.dtic.mil/sti/citations/ADA199697
2.
Hoyniak
,
D.
, and
Clark
,
W.
,
1999
, “
Aerodynamic Damping Predictions Using a Linearized Navier-Stokes Analysis
,”
ASME
Paper No. 99-GT-207.10.1115/99-GT-207
3.
Clark
,
W.
, and
Hall
,
K. C.
,
2000
, “
A Time-Linearized Analysis of Stall Flutter
,”
ASME J. Turbomach.
,
122
(
3
), pp.
467
476
.10.1115/1.1303073
4.
Kersken
,
H.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2017
, “
Flutter Analysis of an Embedded Blade Row With a Harmonic Balance Solver
,”
Proceedings of 12th European Conference Turbomachinery Fluids Dynamics
, Stockholm, Sweden, Apr. 3–7, Paper No.
ETC2017-238
.10.29008/ET C2017-238
5.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.10.2514/2.328
6.
Hall
,
K.
,
Thomas
,
J.
, and
Clark
,
W.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/2.1754
7.
McMullen
,
M.
,
2003
, “
The Application of Non-Linear Frequency Domain Methods to the Euler and Navier-Stokes Equations
,” Ph.D. thesis,
Stanford University
, Stanford, CA.
8.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME
Paper No. GT2014-25230.10.1115/GT2014-25230
9.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H.-P.
, and
Schlüß
,
D.
,
2019
, “
Flutter Analysis of a Transonic Steam Turbine Blade With Frequency and Time-Domain Solvers
,”
Int. J. Turbomach., Prop Power (IJTPP)
,
4
(
2
), p.
15
.10.3390/ijtpp4020015
10.
Heners
,
J.
,
Vogt
,
D.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2019
, “
Investigation of the Impact of Unsteady Turbulence Effects on the Aeroelastic Analysis of a Low-Pressure Turbine Rotor Blade
,”
ASME J. Turbomach.
,
141
(
10
), p.
100801
.10.1115/1.4043950
11.
Junge
,
L.
,
Frey
,
C.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2020
, “
A New Harmonic Balance Approach Using Multidimensional Time
,”
ASME
Paper No. GT2020-16224.10.1115/GT2020-16224
12.
Heners
,
J.
,
Stotz
,
S.
,
Krosse
,
A.
,
Korte
,
D.
,
Beck
,
M.
, and
Vogt
,
D.
,
2021
, “
Prediction of Transient Pressure Fluctuations Within a Low-Pressure Turbine Cascade Using a Lanczos-Filtered Harmonic Balance Method
,”
Int. J. Turbomach. Prop. Power
,
6
(
3
), p.
25
.https://www.mdpi.com/2504-186X/6/3/25/pdf
13.
Parker
,
R.
,
1984
, “
Acoustic Resonances and Blade Vibration in Axial Flow Compressors
,”
J. Sound. Vib.
,
92
(
4
), pp.
529
539
.10.1016/0022-460X(84)90196-2
14.
Kielb
,
R.
,
Hall
,
K. C.
,
Spiker
,
M. A.
, and
Thomas
,
J.
,
2006
, “Non-Synchronous Vibration of Turbomachinery Airfoils,” Duke University: Department of Mechanical Engineering and Materials Science, Durham, NC, Report No.
AFRL-SR-AR-TR-06-0269
, pp.
22
23
.https://people.duke.edu/~jthomas/papers/papers/hcfnsv2004.pdf
15.
Clark
,
S.
,
2013
, “
Design for Coupled-Mode Flutter and Non-Synchronous Vibration in Turbomachinery
,” Ph.D. thesis,
Duke University
,
Durham, NC
.
16.
Stapelfeldt
,
S.
, and
Brandstetter
,
C.
,
2020
, “
Non-Synchronous Vibration in Axial Compressors: Lock-in Mechanism and Semi-Analytical Model
,”
J. Sound Vib.
,
488
, p.
115649
.10.1016/j.jsv.2020.115649
17.
Brandstetter
,
C.
, and
Stapelfeldt
,
S.
,
2021
, “
Analysis of a Linear Model for Non-Synchronous Vibrations Near Stall
,”
Int. J. Turbomach. Prop. Power
,
6
(
3
), p.
26
.10.3390/ijtpp6030026
18.
Sisto
,
F.
,
1953
, “
Stall-Flutter in Cascades
,”
J. Aeronaut. Sci.
,
20
(
9
), pp.
598
604
.10.2514/8.2760
19.
Armstrong
,
E.
, and
Stevenson
,
R.
,
1960
, “
Some Practical Aspects of Compressor Blade Vibration
,”
J. Aeronaut.
,
64
(
591
), pp.
117
130
.10.1017/S0368393100072242
20.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
77
(
4
), pp.
455
467
.10.1115/1.4014389
21.
Vahdati
,
M.
, and
Cumpsty
,
N.
,
2015
, “
Aeroelastic Instability in Transonic Fans
,” ASME
J. Eng. Gas Turbine Power
,
138
(
2
), p.
022604
.10.1115/1.4031225
22.
Rendu
,
Q.
,
Rozenberg
,
Y.
,
Aubert
,
S.
, and
Ferrand
,
P.
,
2016
, “
Investigation of Shock-Wave Boundary-Layer Interaction on Aeroelastic Stability: Towards Active Control
,”
ASME
Paper No. GT2016-57302.10.1115/GT2016-57302
23.
Rendu
,
Q.
,
Rozenberg
,
Y.
,
Aubert
,
S.
, and
Ferrand
,
P.
,
2015
, “
Time-Linearized and Harmonic Balance Navier-Stokes Computations of a Transonic Flow Over an Oscillating Bump
,”
ISUAAAT
14, Stockholm, Sweden, Sept. 8–11, Paper No. I14-S11-5.https://www.researchgate.net/publication/291820780_Time-Linearized_and_Harmonic_Balance_Navier-Stokes_Computations_of_a_Transonic_Flow_over_an_Oscillating_Bump
24.
Giles
,
M.
,
1990
, “
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
(
12
), pp.
2050
2058
.10.2514/3.10521
25.
Schlüß
,
D.
, and
Frey
,
C.
,
2018
, “
Time Domain Flutter Simulations of a Steam Turbine Stage Using Spectral 2D Non-Reflecting Boundary Conditions
,”
Proceedings of ISUAAAT15
, Oxford, UK, Sept. 24–27, Paper No. ISUAAAT15-065.https://www.researchgate.net/publication/329758473_Time_Domain_Flutter_Simulations_of_a_Steam_Turbine_Stage_Using_Sptectral_2D_Non-Reflecting_Boundary_Conditions
26.
Wilcox
,
D.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
27.
Frey
,
C.
,
Ashcroft
,
G.
, and
Kersken
,
H.
,
2015
, “
Simulations of Unsteady Blade Row Interactions Using Linear and Non-Linear Frequency Domain Methods
,”
ASME
Paper No. GT2015-43453.10.1115/GT2015-43453
28.
Ning
,
W.
,
Li
,
Y.
, and
Wells
,
R.
,
2003
, “
Predicting Bladerow Interactions Using a Multistage Time-Linearized Navier–Stokes Solver
,”
ASME J. Turbomach.
,
125
(
1
), pp.
25
32
.10.1115/1.1516570
29.
Petrie-Repar
,
P.
,
2006
, “
Development of an Efficient and Robust Linearised Navier–Stokes Flow Solver
,”
Graduate Studies in Mathematics
, Vol.
6
,
Springer
, Dordrecht, The Netherlands, pp.
437
448
.
30.
Thormann
,
R.
, and
Widhalm
,
M.
,
2013
, “
Linear-Frequency-Domain Predictions of Dynamic-Response Data for Viscous Transonic Flows
,”
AIAA J.
,
51
(
11
), pp.
2540
2557
.10.2514/1.J051896
31.
Kersken
,
H.
,
Ashcroft
,
G.
,
Frey
,
C.
,
Wolfrum
,
N.
, and
Pütz
,
O.
,
2018
, “
Comparison of Linear and Nonlinear Frequency Domain Methods for Flutter Analysis
,”
ASME
Paper No. GT2018-75626.10.1115/GT2018-75626
32.
Ashcroft
,
G.
,
Frey
,
C.
, and
Kersken
,
H.
,
2014
, “
On the Development of a Harmonic Balance Method for Aeroelastic Analysis
,”
Proceedings of Sixth European Conference on Computational Fluid Dynamics
(
ECCOMAS CFD
), Barcelona, Spain, July 20–25, Paper No. 1590.https://www.researchgate.net/publication/265414877_On_the_development_of_a_harmonic_balance_method_for_aeroelastic_analysis
33.
Erengil
,
M.
,
1993
, “
Physical Causes of Separation Shock Unsteadiness in Shock Wave/Turbulent Boundary Layer Interactions
,” Ph.D. thesis,
University of Texas at Austin
,
Austin, TX
.
34.
Sartor
,
F.
,
Clement
,
M.
,
Sipp
,
D.
, and
Bur
,
R.
,
2013
, “
Dynamics of a Shock-Induced Separation in a Transonic Flow: A Linearized Approach
,”
AIAA
Paper No. 2013-2735.10.2514/6.2013-2735
35.
Agostini
,
L.
,
Larchevêque
,
L.
, and
Dupont
,
P.
,
2015
, “
Mechanism of Shock Unsteadiness in Separated Shock/Boundary-Layer Interactions
,”
Phys. Fluids
,
27
(
12
), p.
126103
.10.1063/1.4937350
36.
Dupont
,
P.
,
Haddad
,
C.
, and
Debiève
,
J. F.
,
2006
, “
Space and Time Organization in a Shock-Induced Separated Boundary Layer
,”
J. Fluid Mech.
,
559
, pp.
255
277
.10.1017/S0022112006000267
37.
Shiratori
,
T.
,
Matsushita
,
M.
, and
Noguchi
,
Y.
,
1998
, “
Periodic Fluctuation of Shock Waves in Transonic Cascade Flows
,”
Unsteady Aerodynamics and Aeroelasticity of Turbomachines
,
T. H.
Fransson
, ed.,
Springer
, The
Netherlands
, pp.
693
704
.
38.
Börner
,
M.
, and
Niehuis
,
R.
,
2020
, “
Dynamics of Shock Waves Interacting With Laminar Separated Transsonic Turbine Flow Investigated by High-Speed Schlieren and Surface Hot-Film Sensors
,”
ASME
Paper No. GT2020-14386.10.1115/GT2020-14386
You do not currently have access to this content.