Abstract

Burning carbon-free fuels such as hydrogen in gas turbines promise power generation with minimal emissions of greenhouse gases. A two-stage sequential combustor architecture with a propagation-stabilized flame in the first stage and an auto-ignition-stabilized flame in the second stage allows for efficient combustion of hydrogen fuels. However, interactions between the auto-ignition-stabilized flame and the acoustic modes of the combustor may result in self-sustained thermoacoustic oscillations, which severely affect the stable operation of the combustor. In this paper, we study an “intrinsic” thermoacoustic feedback mechanism in which acoustic waves generated by unsteady heat release rate oscillations of the auto-ignition front propagate upstream and induce flow perturbations in the incoming reactant mixture, which, in turn, act as a disturbance source for the ignition front. We first perform detailed reactive Navier–Stokes (direct numerical simulation (DNS)) and Euler computations of an auto-ignition front in a one-dimensional setting to demonstrate the occurrence of intrinsic instability. Self-excited ignition front oscillations are observed at a characteristic frequency and tend to become more unstable as the acoustic reflection from the boundaries is increased. The Euler computations yield identical unsteady ignition front behavior as the DNS computations, suggesting that diffusive mechanisms have a minor effect on the instability. In the second part of this work, we present a simplified framework based on the linearized Euler equations (LEE) to compute the sound field generated by an unsteady auto-ignition front. Unsteady auto-ignition fronts create sources of sound due to local fluctuations in gas properties, in addition to heat release oscillations, which must be accounted for. The LEE predictions of the fluctuating pressure field in the combustor agree well with the DNS data. The findings of this work are essential for understanding and modeling thermoacoustic instabilities in reheat combustors with auto-ignition-stabilized flames.

References

1.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
2.
Taamallah
,
S.
,
Vogiatzaki
,
K.
,
Alzahrani
,
F. M.
,
Mokheimer
,
E. M.
,
Habib
,
M.
, and
Ghoniem
,
A. F.
,
2015
, “
Fuel Flexibility, Stability and Emissions in Premixed Hydrogen-Rich Gas Turbine Combustion: Technology, Fundamentals, and Numerical Simulations
,”
Appl. Energy
,
154
, pp.
1020
1047
.10.1016/j.apenergy.2015.04.044
3.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790.10.1115/GT2017-64790
4.
Ciani
,
A.
,
Bothien
,
M.
,
Bunkute
,
B.
,
Wood
,
J.
, and
Früchtel
,
G.
,
2019
, “
Superior Fuel and Operational Flexibility of Sequential Combustion in Ansaldo Energia Gas Turbines
,”
J. Global Power Propul. Soc.
,
3
, pp.
630
638
.10.33737/jgpps/110717
5.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Sequential Combustion in Gas Turbines: The Key Technology for Burning High Hydrogen Contents With Low Emissions
,”
ASME
Paper No. GT2019-90798.0.1115/GT2019-90798
6.
Ciani
,
A.
,
Wood
,
J. P.
,
Wickström
,
A.
,
Rørtveit
,
G. J.
,
Steeneveldt
,
R.
,
Pettersen
,
J.
,
Wortmann
,
N.
, and
Bothien
,
M. R.
,
2020
, “
Sequential Combustion in Ansaldo Energia Gas Turbines: The Technology Enabler for CO2-Free, Highly Efficient Power Production Based on Hydrogen
,”
ASME
Paper No. GT2020-14794.10.1115/GT2020-14794
7.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
(Vol.
210
of Progress in Astronautics and Aeronautics),
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
8.
Sattelmayer
,
T.
,
2000
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME
Paper No. 2000-GT-0082.10.1115/2000-GT-0082
9.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
1999
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME
Paper No. 99-GT-003.10.1115/99-GT-003
10.
Hemchandra
,
S.
,
Shanbhogue
,
S.
,
Hong
,
S.
, and
Ghoniem
,
A. F.
,
2018
, “
Role of Hydrodynamic Shear Layer Stability in Driving Combustion Instability in a Premixed Propane-Air Backward-Facing Step Combustor
,”
Phys. Rev. Fluids
,
3
(
6
), p.
063201
.10.1103/PhysRevFluids.3.063201
11.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
12.
Schuller
,
T.
,
Poinsot
,
T.
, and
Candel
,
S.
,
2020
, “
Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions
,”
J. Fluid Mech.
,
894
, pp.
1
95
.10.1017/jfm.2020.239
13.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2001
, “
Thermoacoustic Oscillations in an Annular Combustor
,”
ASME
Paper No. 2001-GT-0037.10.1115/2001-GT-0037
14.
Schulz
,
O.
,
Doll
,
U.
,
Ebi
,
D.
,
Droujko
,
J.
,
Bourquard
,
C.
, and
Noiray
,
N.
,
2019
, “
Thermoacoustic Instability in a Sequential Combustor: Large Eddy Simulation and Experiments
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5325
5332
.10.1016/j.proci.2018.07.089
15.
Hoeijmakers
,
M.
,
Kornilov
,
V.
,
Arteaga
,
I. L.
,
de Goey
,
P.
, and
Nijmeijer
,
H.
,
2014
, “
Intrinsic Instability of Flame–Acoustic Coupling
,”
Combust. Flame
,
161
(
11
), pp.
2860
2867
.10.1016/j.combustflame.2014.05.009
16.
Emmert
,
T.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2015
, “
Intrinsic Thermoacoustic Instability of Premixed Flames
,”
Combust. Flame
,
162
(
1
), pp.
75
85
.10.1016/j.combustflame.2014.06.008
17.
Gruber
,
A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Aditya
,
K.
,
Chen
,
J. H.
, and
Williams
,
F. A.
,
2021
, “
Direct Numerical Simulation of Hydrogen Combustion at Auto-Ignitive Conditions: Ignition, Stability and Turbulent Reaction-Front Velocity
,”
Combust. Flame
,
229
, p.
111385
.10.1016/j.combustflame.2021.02.031
18.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.10.2514/1.24933
19.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
20.
Zellhuber
,
M.
,
Bellucci
,
V.
,
Schuermans
,
B.
, and
Polifke
,
W.
,
2011
, “
Modelling the Impact of Acoustic Pressure Waves on Auto-Ignition Flame Dynamics
,”
Proceedings of the European Combustion Meeting
,
ECM 2011
, Cardiff, UK, June 27–July 1, pp.
1
6
.https://www.researchgate.net/publication/255738733_Modelling_the_Impact_of_Acoustic_Pressure_Waves_on_Auto-Ignition_Flame_Dynamics
21.
Gant
,
F.
,
Gruber
,
A.
, and
Bothien
,
M. R.
,
2020
, “
Development and Validation Study of a 1D Analytical Model for the Response of Reheat Flames to Entropy Waves
,”
Combust. Flame
,
222
, pp.
305
316
.10.1016/j.combustflame.2020.09.005
22.
Gopalakrishnan
,
H. S.
,
Gruber
,
A.
, and
Moeck
,
J.
,
2021
, “
Response of Auto-Ignition-Stabilized Flames to One-Dimensional Disturbances: Intrinsic Response
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121011
.10.1115/1.4052058
23.
Chen
,
L. S.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2016
, “
Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front
,”
Combust. Flame
,
166
, pp.
170
180
.10.1016/j.combustflame.2016.01.015
24.
Gant
,
F.
,
Cuquel
,
A.
, and
Bothien
,
M.
,
2021
, “
Autoignition Flame Transfer Matrix: Analytical Model Versus Large Eddy Simulations
,” Proceedings of the Symposium on Thermoacoustics in Combustion: Industry Meets Academia
(SoTiC 2021)
, Munich, Germany, Sept. 6–10, p.
8436
.10.1177/17568277221086261
25.
Poinsot
,
T. J.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.10.1016/0021-9991(92)90046-2
26.
Sutherland
,
J. C.
, and
Kennedy
,
C. A.
,
2003
, “
Improved Boundary Conditions for Viscous, Reacting, Compressible Flows
,”
J. Comput. Phys.
,
191
(
2
), pp.
502
524
.10.1016/S0021-9991(03)00328-0
27.
Tam
,
C. K.
,
2012
,
Computational Aeroacoustics: A Wave Number Approach
, Vol.
33
,
Cambridge University Press
,
New York
.
28.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinetics
,
36
(
10
), pp.
566
575
.10.1002/kin.20026
29.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Version 2.4.0, California Institute of Technology, Pasadena, CA, accessed Oct. 10, 2021, https://www.cantera.org
30.
Chen
,
J. H.
,
Choudhary
,
A.
,
de Supinski
,
B.
,
DeVries
,
M.
,
Hawkes
,
E. R.
,
Klasky
,
S.
,
Liao
,
W. K.
,
Ma
,
K. L.
,
Mellor-Crummey
,
J.
,
Podhorszki
,
N.
,
Sankaran
,
R.
,
Shende
,
S.
, and
Yoo
,
C. S.
,
2009
, “
Terascale Direct Numerical Simulations of Turbulent Combustion Using S3D
,”
Comput. Sci. Disc.
,
2
(
1
), p.
015001
.10.1088/1749-4699/2/1/015001
31.
Kennedy
,
C. A.
, and
Carpenter
,
M. H.
,
1994
, “
Several New Numerical Methods for Compressible Shear-Layer Simulations
,”
Appl. Numer. Math.
,
14
(
4
), pp.
397
433
.10.1016/0168-9274(94)00004-2
32.
Kennedy
,
C. A.
,
Carpenter
,
M. H.
, and
Lewis
,
R. M.
,
2000
, “
Low-Storage, Explicit Runge–Kutta Schemes for the Compressible Navier–Stokes Equations
,”
Appl. Numer. Math.
,
35
(
3
), pp.
177
219
.10.1016/S0168-9274(99)00141-5
33.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031510
.10.1115/1.4034453
34.
Polifke
,
W.
,
Wall
,
C.
, and
Moin
,
P.
,
2006
, “
Partially Reflecting and Non-Reflecting Boundary Conditions for Simulation of Compressible Viscous Flow
,”
J. Comput. Phys.
,
213
(
1
), pp.
437
449
.10.1016/j.jcp.2005.08.016
35.
Daviller
,
G.
,
Oztarlik
,
G.
, and
Poinsot
,
T.
,
2019
, “
A Generalized Non-Reflecting Inlet Boundary Condition for Steady and Forced Compressible Flows With Injection of Vortical and Acoustic Waves
,”
Comput. Fluids
,
190
, pp.
503
513
.10.1016/j.compfluid.2019.06.027
36.
Aditya
,
K.
,
Gruber
,
A.
,
Xu
,
C.
,
Lu
,
T.
,
Krisman
,
A.
,
Bothien
,
M. R.
, and
Chen
,
J. H.
,
2019
, “
Direct Numerical Simulation of Flame Stabilization Assisted by Autoignition in a Reheat Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2635
2642
.10.1016/j.proci.2018.06.084
37.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
You do not currently have access to this content.