Abstract

Due to energy shortages and environmental issues, the application of reactivity controlled compression ignition (RCCI) combustion in internal combustion engines has received extensive attention. Through the verification of the model, RCCI combustion can be accurately simulated. In this study, the combustion and the emission performance of a single-cylinder heavy-duty natural gas/diesel RCCI engine have been optimized through numerical simulation. Six important parameters including start of injection (SOI) timing, intake valve closing temperature, intake valve closing pressure, exhaust gas recirculation (EGR), swirl ratio, and spray angle have been investigated. The goal is to meet the requirements of European VI emission regulations while maintaining a high gross indicated efficiency (GIE). A strategy to achieve clean and efficient combustion of RCCI engine is proposed. The results showed that the addition of EGR can effectively reduce nitrogen oxide (NOx) emissions. SOI had the greatest impact on RCCI combustion and emission performance. Earlier SOI can improve the uniformity of the fuel mixture in the cylinder. Under the combined optimization of six important parameters, NOx, hydrocarbons, and carbon monoxide emissions can meet European VI emission regulations, and fuel consumption can meet Environmental Protection Agency consumption regulations, improving the GIE.

References

1.
Selleri
,
T.
,
Nova
,
I.
, and
Tronconi
,
E.
,
2019
, “
An Efficient Reduced Model of NH3-SCR Converters for Mobile Aftertreatment Systems
,”
Chem. Eng. J.
,
377
, p.
120053
.10.1016/j.cej.2018.09.214
2.
Tsuneyoshi
,
K.
, and
Yamamoto
,
K.
,
2012
, “
A Study on the Cell Structure and the Performances of Wall-Flow Diesel Particulate Filter
,”
Energy
,
48
(
1
), pp.
492
499
.10.1016/j.energy.2012.10.007
3.
Ying
,
W.
,
Li
,
H.
,
Jie
,
Z.
, and
Longbao
,
Z.
,
2009
, “
Study of HCCI-DI Combustion and Emissions in a DME Engine
,”
Fuel
,
88
(
11
), pp.
2255
2261
.10.1016/j.fuel.2009.05.008
4.
Pan
,
S.
,
Liu
,
X.
,
Cai
,
K.
,
Li
,
X.
,
Han
,
W.
, and
Li
,
B.
,
2020
, “
Experimental Study on Combustion and Emission Characteristics of Iso-Butanol/Diesel and Gasoline/Diesel RCCI in a Heavy-Duty Engine Under Low Loads
,”
Fuel
,
261
, p.
116434
.10.1016/j.fuel.2019.116434
5.
Jeon
,
J.
, and
Bae
,
C.
,
2013
, “
The Effects of Hydrogen Addition on Engine Power and Emission in DME Premixed Charge Compression Ignition Engine
,”
Int. J. Hydrogen Energy
,
38
(
1
), pp.
265
273
.10.1016/j.ijhydene.2012.09.177
6.
Reymond
,
M.
,
2007
, “
European Key Issues Concerning Natural Gas: Dependence and Vulnerability
,”
Energy Policy
,
35
(
8
), pp.
4169
4176
.10.1016/j.enpol.2007.02.030
7.
Fu
,
J.
,
Deng
,
B.
,
Liu
,
J.
,
Wang
,
L.
,
Xu
,
Z.
,
Yang
,
J.
, and
Shu
,
G.
,
2014
, “
Study of SI Engine Fueled With Methanol Vapor and Dissociation Gas Based on Exhaust Heat Dissociating Methanol
,”
Energy Convers Manage
,
79
, pp.
213
223
.10.1016/j.enconman.2013.11.040
8.
Yilmaz
,
N.
, and
Sanchez
,
T. M.
,
2012
, “
Analysis of Operating a Diesel Engine on Biodiesel-Ethanol and Biodiesel-Methanol Blends
,”
Energy
,
46
(
1
), pp.
126
129
.10.1016/j.energy.2011.11.062
9.
Nilsen
,
C. W.
,
Biles
,
D. E.
,
Yraguen
,
B. F.
, and
Mueller
,
C. J.
,
2020
, “
Ducted Fuel Injection vs. Conventional Diesel Combustion: Extending the Load Range in an Optical Engine With a Four-Orifice Fuel Injector
,”
SAE Int. J. Engines
, 14, No. SAND-2020-11528J.10.4271/03-14-01-0004
10.
Vassallo
,
A.
,
Beatrice
,
C.
,
Di Blasio
,
G.
,
Belgiorno
,
G.
,
Avolio
,
G.
, and
Pesce
,
F. C.
,
2018
, “
The Key Role of Advanced, Flexible Fuel Injection Systems to Match the Future CO2 Targets in an Ultra-Light Mid-Size Diesel Engine
,”
SAE
Paper No. 2018-37-0005. 10.1115/2018-37-0005
11.
Fraioli
,
V.
,
Beatrice
,
C.
,
Di Blasio
,
G.
,
Belgiorno
,
G.
, and
Migliaccio
,
M.
,
2017
, “
Multidimensional Simulations of Combustion in Methane-Diesel Dual-Fuel Light-Duty Engines
,”
SAE
Paper No. 2017-01-0568.10.4271/2017-01-0568
12.
Rahnama
,
P.
,
Paykani
,
A.
, and
Reitz
,
R. D.
,
2017
, “
A Numerical Study of the Effects of Using Hydrogen, Reformer Gas and Nitrogen on Combustion, Emissions and Load Limits of a Heavy Duty Natural Gas/Diesel RCCI Engine
,”
Appl. Energy
,
193
, pp.
182
198
.10.1016/j.apenergy.2017.02.023
13.
Kokabi
,
H.
,
Najafi
,
M.
,
Jazayeri
,
S. A.
, and
Jahanian
,
O.
,
2021
, “
Hydrogen and Propane Implications for Reactivity Controlled Compression Ignition Combustion Engine Running on Landfill Gas and Diesel Fuel
,”
Int. J. Hydrogen Energy
,
46
(
62
), pp.
31903
31915
.10.1016/j.ijhydene.2021.07.050
14.
Paykani
,
A.
,
Garcia
,
A.
,
Shahbakhti
,
M.
,
Rahnama
,
P.
, and
Reitz
,
R. D.
,
2021
, “
Reactivity Controlled Compression Ignition Engine: Pathways Towards Commercial Viability
,”
Appl. Energy
,
282
, p.
116174
.10.1016/j.apenergy.2020.116174
15.
Paykani
,
A.
,
Kakaee
,
A.-H.
,
Rahnama
,
P.
, and
Reitz
,
R. D.
,
2016
, “
Progress and Recent Trends in Reactivity-Controlled Compression Ignition Engines
,”
Int. J. Engine Res.
,
17
(
5
), pp.
481
524
.10.1177/1468087415593013
16.
Cho
,
K.
,
Curran
,
S.
,
Prikhodko
,
V. Y.
,
Sluder
,
S.
, and
Wagner
,
R. M.
,
2011
, “
Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine
,” Oak Ridge National Lab. (ORNL), Oak Ridge, TN, Fuels, Engines Emissions Res. Cent. (
FEERC
), 2011 7th U.S. National Combustion Meeting, Atlanta, GA, Mar. 20–23.https://www.researchgate.net/publication/255240915_Experimental_Investigation_of_Fuel-Reactivity_Controlled_Compression_Ignition_RCCI_Combustion_Mode_in_a_Multi-Cylinder_Light-Duty_Diesel_Engine
17.
Hariharan
,
D.
,
Rajan Krishnan
,
S.
,
Kumar Srinivasan
,
K.
, and
Sohail
,
A.
,
2021
, “
Multiple Injection Strategies for Reducing HC and CO Emissions in Diesel-Methane Dual-Fuel Low Temperature Combustion
,”
Fuel
,
305
, p.
121372
.10.1016/j.fuel.2021.121372
18.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.10.1177/1468087411401548
19.
Zhao
,
W.
,
Zhang
,
Y.
,
Huang
,
G.
,
He
,
Z.
,
Qian
,
Y.
, and
Lu
,
X.
,
2021
, “
Experimental Investigation on Combustion and Emission Characteristics of Butanol/Biodiesel Under Blend Fuel Mode, Dual Fuel RCCI and ICCI Modes
,”
Fuel
,
305
, p.
121590
.10.1016/j.fuel.2021.121590
20.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Kumar
,
V.
,
2021
, “
Particulate Characteristics of Low-Temperature Combustion (PCCI and RCCI) Strategies in Single Cylinder Research Engine for Developing Sustainable and Cleaner Transportation Solution
,”
Environ. Pollut.
,
284
, p.
117375
.10.1016/j.envpol.2021.117375
21.
Liu
,
X.
,
Wang
,
H.
,
Zheng
,
Z.
, and
Yao
,
M.
,
2021
, “
Numerical Investigation on the Combustion and Emission Characteristics of a Heavy-Duty Natural Gas-Diesel Dual-Fuel Engine
,”
Fuel
,
300
, p.
120998
.10.1016/j.fuel.2021.120998
22.
Wu
,
Z.
,
Rutland
,
C.
, and
Han
,
Z.
,
2017
, “
Numerical Study on Controllability of Natural Gas and Diesel Dual Fuel Combustion in a Heavy-Duty Engine
,”
SAE
Paper No. 2017-01-0756.10.4271/2017-01-0756
23.
Dadsetan
,
M.
,
Chitsaz
,
I.
, and
Amani
,
E.
,
2019
, “
A Study of Swirl Ratio Effects on the NOx Formation and Mixture Stratification in an RCCI Engine
,”
Energy
,
182
, pp.
1100
1114
.10.1016/j.energy.2019.06.109
24.
Mohammadnejad
,
S.
,
Amani
,
E.
,
Hosseini
,
R.
,
Chitsaz
,
I.
, and
Kamali
,
A.
,
2019
, “
Effects of the Swirl Ratio and Spray Angle on the Mixture Stratification in a Diesel–NG RCCI Engine
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
5
), p.
233
.10.1007/s40430-019-1736-5
25.
Wu
,
Z.
,
Rutland
,
C. J.
, and
Han
,
Z.
,
2019
, “
Numerical Evaluation of the Effect of Methane Number on Natural Gas and Diesel Dual-Fuel Combustion
,”
Int. J. Engine Res.
,
20
(
4
), pp.
405
423
.10.1177/1468087418758114
26.
Nieman
,
D. E.
,
Dempsey
,
A. B.
, and
Reitz
,
R. D.
,
2012
, “
Heavy-Duty RCCI Operation Using Natural Gas and Diesel
,”
SAE Int. J. Engines
,
5
(
2
), pp.
270
285
.10.4271/2012-01-0379
27.
Ryan Walker
,
N.
,
Wissink
,
M. L.
,
DelVescovo
,
D. A.
, and
Reitz
,
R. D.
,
2015
, “
Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042202
.10.1115/1.4030110
28.
Richards
,
K.
,
Senecal
,
P.
, and
Pomraning
,
E.
,
CONVERGE (v2.3)
,
Convergent Science
,
Madison, WI
.
29.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
30.
Reitz
,
R. D.
, and
Beale
,
J. C.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
31.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
32.
Amsden
,
A. A.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,” Los Alamos National Laboratory, Los Alamos, NM.10.2172/6228444
33.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
Mcdavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Paper No. pp. 2003-01-1043.10.4271/2003-01-1043
34.
Rahimi
,
A.
,
Fatehifar
,
E.
, and
Saray
,
R. K.
,
2010
, “
Development of an Optimized Chemical Kinetic Mechanism for Homogeneous Charge Compression Ignition Combustion of a Fuel Blend of n -Heptane and Natural Gas Using a Genetic Algorithm
,”
Proc. Inst. Mech. Eng.
,
224
(
9
), pp.
1141
1159
.10.1243/09544070JAUTO1343
35.
Mabadi Rahimi
,
H.
,
Jazayeri
,
S. A.
, and
Ebrahimi
,
M.
,
2020
, “
Hydrogen Energy Share Enhancement in a Heavy Duty Diesel Engine Under RCCI Combustion Fueled With Natural Gas and Diesel Oil
,”
Int. J. Hydrogen Energy
,
45
(
35
), pp.
17975
17991
.10.1016/j.ijhydene.2020.04.263
36.
Rajput
,
R.
,
2005
,
Internal Combustion Engines
,
Laxmi Publications (P) Ltd., New Delhi
, India.
37.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.10.1080/00102209208947221
38.
Xu
,
G.
,
Jia
,
M.
,
Li
,
Y.
,
Chang
,
Y.
, and
Wang
,
T.
,
2018
, “
Potential of Reactivity Controlled Compression Ignition (RCCI) Combustion Coupled With Variable Valve Timing (VVT) Strategy for Meeting Euro 6 Emission Regulations and High Fuel Efficiency in a Heavy-Duty Diesel Engine
,”
Energy Convers. Manage.
,
171
, pp.
683
698
.10.1016/j.enconman.2018.06.034
39.
Splitter
,
D.
,
Wissink
,
M.
,
Dan
,
D. V.
, and
Reitz
,
R. D.
,
2013
, “
RCCI Engine Operation Towards 60% Thermal Efficiency
,”
SAE
Paper No. 2013-01-0279.10.4271/2013-01-0279
You do not currently have access to this content.