Abstract

Due to energy shortage and environmental problems, the application of natural gas in internal combustion engine has attracted extensive attention. Therefore, diesel pilot ignition natural gas engine is a promising technology. However, the different sources of natural gas lead to the change in composition, which has a great impact on engine combustion and emission. In this study, the relationship between Wobbe index (WI) and swirl ratio (SR) of six different natural gas mixtures was studied by numerical simulation method. Besides, reactivity controlled compression ignition (RCCI) combustion strategy was evaluated. The results showed that increasing the WI increased the in-cylinder pressure and temperature, increased the ignition delay, and shortened the combustion duration, the gross indicated efficiency (GIE) of the six gases exceeded 50%. In addition, the increase of WI increased the nitrogen oxide (NOx) emissions and reduced the hydrocarbon (HC) and carbon monoxide (CO) emissions. Moreover, the peak pressure rise rate (PPRR) increased with the rise of WI, which may lead to engine knock. The results also showed that the increase of SR increased the in-cylinder pressure and temperature and improved the PPRR. When the SR was 0.7 and the WI was 51.7, the combustion and emission performance of the RCCI engine was relatively better.

References

1.
Iwasaki
,
M.
, and
Shinjoh
,
H.
,
2010
, “
A Comparative Study of ‘Standard’, ‘Fast’ and ‘NO2’ SCR Reactions Over Fe/Zeolite Catalyst
,”
Appl. Catal. A-Gen.
,
390
(
1–2
), pp.
71
77
.10.1016/j.apcata.2010.09.034
2.
Gong
,
C.
,
Si
,
X.
, and
Liu
,
F.
,
2021
, “
Combined Effects of Excess Air Ratio and EGR Rate on Combustion and Emissions Behaviors of a GDI Engine With CO2 as Simulated EGR (CO2) at Low Load
,”
Fuel
,
293
, p.
120442
.10.1016/j.fuel.2021.120442
3.
Tsuneyoshi
,
K.
, and
Yamamoto
,
K.
,
2012
, “
A Study on the Cell Structure and the Performances of Wall-Flow Diesel Particulate Filter
,”
Energy
,
48
(
1
), pp.
492
499
.10.1016/j.energy.2012.10.007
4.
Achtnicht
,
M.
,
Bühler
,
G.
, and
Hermeling
,
C.
,
2012
, “
The Impact of Fuel Availability on Demand for Alternative-Fuel Vehicles
,”
Transp. Res. Part D-Transp. Environ.
,
17
(
3
), pp.
262
269
.10.1016/j.trd.2011.12.005
5.
McTaggart-Cowan
,
G. P.
,
Rogak
,
S. N.
,
Munshi
,
S. R.
,
Hill
,
P. G.
, and
Bushe
,
W. K.
,
2010
, “
The Influence of Fuel Composition on a Heavy-Duty, Natural-Gas Direct-Injection Engine
,”
Fuel
,
89
(
3
), pp.
752
759
.10.1016/j.fuel.2009.10.007
6.
Li
,
J.
,
Gong
,
C.
,
Wang
,
E.
,
Yu
,
X.
,
Wang
,
Z.
, and
Liu
,
X.
,
2010
, “
Emissions of Formaldehyde and Unburned Methanol From a Spark-Ignition Methanol Engine During Cold Start
,”
Energy Fuels
,
24
(
2
), pp.
863
870
.10.1021/ef9009982
7.
Mack
,
J. H.
,
Aceves
,
S. M.
, and
Dibble
,
R. W.
,
2009
, “
Demonstrating Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine
,”
Energy
,
34
(
6
), pp.
782
787
.10.1016/j.energy.2009.02.010
8.
Loganathan
,
M.
,
Thanigaivelan
,
V.
,
Madhavan
,
V. M.
,
Anbarasu
,
A.
, and
Velmurugan
,
A.
,
2020
, “
The Synergetic Effect Between Hydrogen Addition and EGR on Cashew Nut Shell Liquid Biofuel-Diesel Operated Engine
,”
Fuel
,
266
, p.
117004
.10.1016/j.fuel.2019.117004
9.
Nalley
,
S.
, and
LaRose
,
A.
,
2021
, “
Annual Energy Outlook 2021 With Projection to 2050
,”
U.S. Energy Information Administration
, Washington, DC.
10.
You
,
J.
,
Liu
,
Z.
,
Wang
,
Z.
,
Wang
,
D.
, and
Xu
,
Y.
,
2020
, “
Experimental Analysis of Inert Gases in EGR on Engine Power and Combustion Characteristics in a Stoichiometric Dual Fuel Heavy-Duty Natural Gas Engine Ignited With Diesel
,”
Appl. Therm. Eng.
,
180
, p.
115860
.10.1016/j.applthermaleng.2020.115860
11.
Wang
,
T.
, and
Lin
,
B.
,
2014
, “
Impacts of Unconventional Gas Development on China's Natural Gas Production and Import
,”
Renewable Sust. Energy Rev.
,
39
, pp.
546
554
.10.1016/j.rser.2014.07.103
12.
Kakaee
,
A.-H.
,
Paykani
,
A.
, and
Ghajar
,
M.
,
2014
, “
The Influence of Fuel Composition on the Combustion and Emission Characteristics of Natural Gas Fueled Engines
,”
Renewable Sust. Energy Rev.
,
38
, pp.
64
78
.10.1016/j.rser.2014.05.080
13.
Kakaee
,
A.-H.
, and
Paykani
,
A.
,
2013
, “
Research and Development of Natural-Gas Fueled Engines in Iran
,”
Renewable Sust. Energy Rev.
,
26
, pp.
805
821
.10.1016/j.rser.2013.05.048
14.
Thiruvengadam
,
A.
,
Besch
,
M.
,
Padmanaban
,
V.
,
Pradhan
,
S.
, and
Demirgok
,
B.
,
2018
, “
Natural Gas Vehicles in Heavy-Duty Transportation-A Review
,”
Energy Policy
,
122
, pp.
253
259
.10.1016/j.enpol.2018.07.052
15.
You
,
J.
,
Liu
,
Z.
,
Wang
,
Z.
,
Wang
,
D.
, and
Xu
,
Y.
,
2020
, “
Impact of Natural Gas Injection Strategies on Combustion and Emissions of a Dual Fuel Natural Gas Engine Ignited With Diesel at Low Loads
,”
Fuel
,
260
, p.
116414
.10.1016/j.fuel.2019.116414
16.
Cho
,
H. M.
, and
He
,
B.-Q.
,
2007
, “
Spark Ignition Natural Gas Engines - A Review
,”
Energy Conv. Manag.
,
48
(
2
), pp.
608
618
.10.1016/j.enconman.2006.05.023
17.
Chen
,
W.
,
Pan
,
J.
,
Liu
,
Y.
,
Fan
,
B.
,
Liu
,
H.
, and
Otchere
,
P.
,
2019
, “
Numerical Investigation of Direct Injection Stratified Charge Combustion in a Natural Gas-Diesel Rotary Engine
,”
Appl. Energy
,
233–234
, pp.
453
467
.10.1016/j.apenergy.2018.10.038
18.
Ramos da Costa
,
Y. J.
,
Barbosa de Lima
,
A. G.
,
Bezerra Filho
,
C. R.
, and
de Araujo Lima
,
L.
,
2012
, “
Energetic and Exergetic Analyses of a Dual-Fuel Diesel Engine
,”
Renewable Sust. Energy Rev.
,
16
(
7
), pp.
4651
4660
.10.1016/j.rser.2012.04.013
19.
Mikulski
,
M.
, and
Wierzbicki
,
S.
,
2016
, “
Numerical Investigation of the Impact of Gas Composition on the Combustion Process in a Dual-Fuel Compression-Ignition Engine
,”
J. Nat. Gas Sci. Eng.
,
31
, pp.
525
537
.10.1016/j.jngse.2016.03.074
20.
Chandra
,
R.
,
Vijay
,
V. K.
,
Subbarao
,
P. M. V.
, and
Khura
,
T. K.
,
2011
, “
Performance Evaluation of a Constant Speed IC Engine on CNG, Methane Enriched Biogas and Biogas
,”
Appl. Energy
,
88
(
11
), pp.
3969
3977
.10.1016/j.apenergy.2011.04.032
21.
Nieman
,
D. E.
,
Dempsey
,
A. B.
, and
Reitz
,
R. D.
,
2012
, “
Heavy-Duty RCCI Operation Using Natural Gas and Diesel
,”
SAE Int. J. Engines
,
5
(
2
), pp.
270
285
.10.4271/2012-01-0379
22.
Paykani
,
A.
,
Garcia
,
A.
,
Shahbakhti
,
M.
,
Rahnama
,
P.
, and
Reitz
,
R. D.
,
2021
, “
Reactivity Controlled Compression Ignition Engine: Pathways Towards Commercial Viability
,”
Appl. Energy
,
282
, p.
116174
.10.1016/j.apenergy.2020.116174
23.
Paykani
,
A.
,
Kakaee
,
A.-H.
,
Rahnama
,
P.
, and
Reitz
,
R. D.
,
2016
, “
Progress and Recent Trends in Reactivity-Controlled Compression Ignition Engines
,”
Int. J. Engine Res.
,
17
(
5
), pp.
481
524
.10.1177/1468087415593013
24.
Wu
,
Z.
,
Rutland
,
C. J.
, and
Han
,
Z.
,
2019
, “
Numerical Evaluation of the Effect of Methane Number on Natural Gas and Diesel Dual-Fuel Combustion
,”
Int. J. Engine Res.
,
20
(
4
), pp.
405
423
.10.1177/1468087418758114
25.
Kokabi
,
H.
,
Najafi
,
M.
,
Jazayeri
,
S. A.
, and
Jahanian
,
O.
,
2021
, “
Hydrogen and Propane Implications for Reactivity Controlled Compression Ignition Combustion Engine Running on Landfill Gas and Diesel Fuel
,”
Int. J. Hydrogen Energy
,
46
(
62
), pp.
31903
31915
.10.1016/j.ijhydene.2021.07.050
26.
Kakaee
,
A.-H.
,
Rahnama
,
P.
, and
Paykani
,
A.
,
2015
, “
Influence of Fuel Composition on Combustion and Emissions Characteristics of Natural Gas/Diesel RCCI Engine
,”
J. Nat. Gas Sci. Eng.
,
25
, pp.
58
65
.10.1016/j.jngse.2015.04.020
27.
Asadollahzadeh
,
P.
,
Hamedi
,
M. H.
, and
Jazayeri
,
S. A.
,
2021
, “
A Comprehensive Study of a Reactivity-Controlled Compression Ignition Engine Fueled With Biogas and Diesel Oil
,”
Clean Technol. Environ.
,
23
(
1
), pp.
113
126
.10.1007/s10098-020-01983-z
28.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Numerical Investigation of Methane Number and Wobbe Index Effects in Lean-Burn Natural Gas Spark-Ignition Combustion
,”
Energy Fuels
,
33
(
5
), pp.
4564
4574
.10.1021/acs.energyfuels.8b04463
29.
Feist
,
M. D.
,
Landau
,
M.
, and
Harte
,
E.
,
2010
, “
The Effect of Fuel Composition on Performance and Emissions of a Variety of Natural Gas Engines
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
100
117
.10.4271/2010-01-1476
30.
Min
,
B. H.
,
Bang
,
K. H.
,
Kim
,
H. Y.
,
Chung
,
J. T.
, and
Park
,
S.
,
1998
, “
Effects of Gas Composition on the Performance and Hydrocarbon Emissions for CNG Engines
,”
SAE
Paper No. 981918. 10.4271/981918
31.
Ryan Walker
,
N.
,
Wissink
,
M. L.
,
DelVescovo
,
D. A.
, and
Reitz
,
R. D.
,
2015
, “
Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042202
.10.1115/1.4030110
32.
Richards
,
K. J.
,
Senecal
,
P.
, and
Pomraning
,
E.
, 2020,
Converge Manual. Converge (Version 3.0) Manual
,
Convergent Science
,
Madison, WI
.
33.
Reitz
,
R. D.
, and
Beale
,
J. C.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atom. Spr.
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
34.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
35.
Amsden
,
A. A.
,
O'Rourke
,
P.
, and
Butler
,
T.
,
1989
,
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,
Los Alamos National Laboratory
,
Los Alamos, NM
.
36.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
Mcdavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Paper No. 2003-01-1043. 10.4271/2003-01-1043
37.
Rahimi
,
A.
,
Fatehifar
,
E.
, and
Saray
,
R. K.
,
2010
, “
Development of an Optimized Chemical Kinetic Mechanism for Homogeneous Charge Compression Ignition Combustion of a Fuel Blend of n-Heptane and Natural Gas Using a Genetic Algorithm
,”
Proc. Inst. Mech. Eng. Part D-J. Autom. Eng.
,
224
(
9
), pp.
1141
1159
.10.1243/09544070JAUTO1343
38.
Ebrahimi
,
M.
,
Najafi
,
M.
,
Jazayeri
,
S. A.
, and
Mohammadzadeh
,
A. R.
,
2018
, “
A Detail Simulation of Reactivity Controlled Compression Ignition Combustion Strategy in a Heavy-Duty Diesel Engine Run on Natural Gas/Diesel Fuel
,”
Int. J. Engine Res.
,
19
(
7
), pp.
774
789
.10.1177/1468087417730486
39.
Rahimi
,
H. M.
,
Jazayeri
,
S. A.
, and
Ebrahimi
,
M.
,
2020
, “
Hydrogen Energy Share Enhancement in a Heavy Duty Diesel Engine Under RCCI Combustion Fueled With Natural Gas and Diesel Oil
,”
Int. J. Hydrogen Energy
,
45
(
35
), pp.
17975
17991
.10.1016/j.ijhydene.2020.04.263
40.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.10.1080/00102209508907782
41.
Healy
,
D.
,
Curran
,
H. J.
,
Simmie
,
J. M.
,
Kalitan
,
D. M.
,
Zinner
,
C. M.
,
Barrett
,
A. B.
,
Petersen
,
E. L.
, and
Bourque
,
G.
,
2008
, “
Methane/Ethane/Propane Mixture Oxidation at High Pressures and at High, Intermediate and Low Temperatures
,”
Combust. Flame
,
155
(
3
), pp.
441
448
.10.1016/j.combustflame.2008.07.003
42.
Smith
,
G.
,
Golden
,
D.
,
Frenklach
,
M.
,
Moriarty
,
N.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
, Bowman, C., Hanson, R., Song, S., Gardiner, W., Lissianski, V., and Qin, Z., 2006,
Gri-Mech 3.0. mechanism, Version 3.0. Gas Research Institute
,
University of California
,
Berkeley, CA
.
43.
Dadsetan
,
M.
,
Chitsaz
,
I.
, and
Amani
,
E.
,
2019
, “
A Study of Swirl Ratio Effects on the NOx Formation and Mixture Stratification in an RCCI Engine
,”
Energy
,
182
, pp.
1100
1114
.10.1016/j.energy.2019.06.109
You do not currently have access to this content.