Abstract

Modern gas turbines operate in very demanding thermomechanical conditions. The operating temperatures are typically higher than material capability, which requires the parts to be cooled. This work aims to provide a concise overview of the current cooling methods and heat transfer mechanisms occurring in modern gas turbines, including different types of turbulence promoters, impingement, film cooling, microcooling, and the impact of recent applications of additive manufacturing.

References

1.
Cumpsty
,
N.
,
2003
,
Jet Propulsion: A Simple Guide to the Aerodynamics and Thermodynamics Design and Performance of Jet Engines
,
Cambridge University Press
, Cambridge, UK.
2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
3.
Bunker
,
R. S.
,
Dees
,
J. E.
, and
Palafox
,
P.
,
2014
, “
Impingement Cooling in Gas Turbines: Design, Applications, and Limitations
,”
Impingement Jet Cooling in Gas Turbines (WIT Transactions on State-of-the-Art in Science and Engineering, Vol. 76)
,
WIT Press
,
Ashurst, UK
, pp.
1755
8336
.
4.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.10.1016/S0065-2717(06)39006-5
5.
Bunker
,
R. S.
,
2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
,
129
(
2
), pp.
193
201
.10.1115/1.2464142
6.
Bunker
,
R. B.
,
2008
, “
Innovative Gas Turbine Cooling Techniques
,”
WIT Transactions on State-of-the-Art in Science and Engineering
, Vol.
42
,
WIT Press
, Ashurst, UK.
7.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
. 10.2514/2.1964
8.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1971
, “
Heat Transfer and Friction in Tubes With Repeated-Rib Roughness
,”
Int. J. Heat Mass Transfer
,
14
(
4
), pp.
601
617
.10.1016/0017-9310(71)90009-3
9.
Burggraf
,
F.
,
1970
, “
Experimental Heat Transfer and Pressure Drop With Two-Dimensional Discrete Turbulence Promoters Applied to Two Opposite Walls of a Square Tube
,” ASME, New York, pp.
70
79
.
10.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces
,”
Int. J. Heat Mass Transfer
,
21
(
8
), pp.
1143
1156
.10.1016/0017-9310(78)90113-8
11.
Bailey
,
J. C.
, and
Bunker
,
R. S.
,
2003
, “
Heat Transfer and Friction in Channels With Very High Blockage 45 Staggered Turbulators
,”
ASME
Paper No. GT2003-38611.10.1115/GT2003-38611
12.
Hahn
,
T.
,
Deakins
,
B.
,
Buechler
,
A.
,
Kumar
,
S.
, and
Amano
,
R. S.
,
2012
, “
Experimental Analysis of the Heat Transfer Variations Within an Internal Passage of a Typical Gas Turbine Blade Using Varied Internal Geometries
,”
ASME
Paper No. DETC2012-70686.10.1115/DETC2012-70686
13.
Nourin
,
F. N.
, and
Amano
,
R.
,
2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p. 080801.10.1115/1.4048865
14.
Naik
,
S.
,
Retzko
,
S.
,
Gritsch
,
M.
, and
Sedlov
,
A.
,
2014
, “
Impact of Turbulator Design on the Heat Transfer in a High Aspect Ratio Passage of a Turbine Blade
,”
ASME
Paper No. GT2014-25841.10.1115/GT2014-25841
15.
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
,
2014
, “
Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage With Smooth Walls
,”
ASME
Paper No. 98-GT-464.10.1115/98-GT-464
16.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
(
4
), pp.
847
857
.10.1115/1.2928038
17.
Dutta
,
S.
,
Han
,
J.-C.
, and
Zhang
,
Y.-M.
,
1995
, “
Influence of Rotation on Heat Transfer From a Two-Pass Channel With Periodically Placed Turbulence and Secondary Flow Promoters
,”
Int. J. Rotating Mach.
,
1
(
2
), pp.
129
144
.10.1155/S1023621X95000030
18.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1991
, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
42
51
.10.1115/1.2927736
19.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
,
8
, pp.
93
160
.10.1016/S0065-2717(08)70038-8
20.
Sparrow
,
E. M.
,
Ramsey
,
J. W.
, and
Altemani
,
C. A. C.
,
1980
, “
Experiments on In-Line Pin Fin Arrays and Performance Comparisons With Staggered Arrays
,”
ASME J. Heat Mass Transfer-Trans.
,
102
(
1
), pp.
44
50
.10.1115/1.3244247
21.
Metzger
,
D. E.
, and
Haley
,
S. W.
,
1982
, “
Heat Transfer Experiments and Flow Visualization for Arrays of Short Pin Fins
,”
ASME
Paper No. 82-GT-138.10.1115/82-GT-138
22.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
,
1982
, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
104
(
4
), pp.
700
706
.10.1115/1.3245188
23.
VanFossen
,
G. J.
,
1982
, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
J. Eng. Power
,
104
(
2
), pp.
268
274
.10.1115/1.3227275
24.
Chyu
,
M. K.
, and
Natarajan
,
V.
,
1996
, “
Heat Transfer on the Base Surface of Three-Dimensional Protruding Elements
,”
Int. J. Heat Mass Transfer
,
39
(
14
), pp.
2925
2935
.10.1016/0017-9310(95)00381-9
25.
Otto
,
M.
,
Hodges
,
J.
,
Gupta
,
G.
, and
Kapat
,
J. S.
,
2019
, “
Vortical Structures in Pin Fin Arrays for Turbine Cooling Applications
,”
ASME
Paper No. GT2019-90552.10.1115/GT2019-90552
26.
Afanasýew
,
V. N.
,
Veselkin
,
V. Y.
,
Leontiev
,
A. I.
,
Skibin
,
A. P.
, and
Chudnovskiy
,
Y. P.
,
1993
, “
Thermohydraulics of Flow Over Isolated Depressions (Pits, Grooves) in a Smooth Wall
,”
Heat Transfer Res.
,
25
(
1
), pp.
22
56
.
27.
Choi
,
E. Y.
,
Choi
,
Y. D.
, and
Kwak
,
J. S.
,
2013
, “
Effect of Dimple Configuration on Heat Transfer Coefficient in a Rib-Dimpled Channel
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
653
659
.10.2514/1.T4046
28.
Khalatov
,
A. A.
,
2001
, “
Vortex Technologies in Aerospace Engineering
,”
Proceedings of the US–Ukrainian Workshop on Innovative Combustion and Aerothermal Technologies in Energy and Power Systems
, Kiev, Ukraine, May 21–24, pp.
20
25
.
29.
Seibold
,
F.
,
Ligrani
,
P.
, and
Weigand
,
B.
,
2022
, “
Flow and Heat Transfer in Swirl Tubes — A Review
,”
Int. J. Heat Mass Transfer
,
187
, p.
122455
. 10.1016/j.ijheatmasstransfer.2021.122455
30.
Wright
,
L. M.
, and
Han
,
J.-C.
,
2006
, “
Enhanced Internal Cooling of Turbine Blades and Vanes
,”
The Gas Turbine Handbook
, Vol.
4
,
U.S. Department of Energy, National Energy Technology Laboratory
,
Pittsburgh, PA
, pp.
1
5
.
31.
Chen
,
W.
,
Ren
,
J.
, and
Jiang
,
H.
,
2011
, “
Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System
,”
ASME J. Turbomach.
,
133
(
4
), p.
041012
.10.1115/1.4002989
32.
Metzger
,
D. E.
, and
Korstad
,
R. J.
,
1972
, “
Effects of Crossflow on Impingement Heat Transfer
,”
J. Eng. Power
,
94
(
1
), pp.
35
41
.10.1115/1.3445616
33.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
2015
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME
Paper No. 81-GT-77.10.1115/81-GT-77
34.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1966
, “
Heat Transfer Between a Flat Plate and Jets of Air Impinging on It
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
88
(
1
), pp.
101
107
.10.1115/1.3691449
35.
Petzold
,
K.
,
1964
, “
Heat Transfer on a Perpendicularly Impinged Plate
,”
Wiss. Z. Tech. Univ. Dresden
,
13
, pp.
1157
1161
.
36.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.10.1016/S0065-2717(08)70221-1
37.
Son
,
C.
,
Gillespie
,
D.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2000
, “
Heat Transfer Enhancement Strategy for an Impingement Cooling System
,”
Proceedings of the Eighth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Mar. 26–30, pp.
721
729
.
38.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
(
1
), pp.
147
153
.10.1115/1.1331537
39.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
,
2008
, “
Heat Transfer and Pressure Investigation of Dimple Impingement
,”
ASME
Paper No. GT2005-68823.10.1115/GT2005-68823
40.
Osorio
,
A.
,
Hodges
,
J.
,
Zawati
,
H.
,
Fernandez
,
E. J.
,
Kapat
,
J. S.
, and
Rodriguez
,
J.
,
2019
, “
Impact of Sweeping Jet on Area-Averaged Impingement Heat Transfer
,”
ASME
Paper No. GT2019-91897.10.1115/GT2019-91897
41.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2006
, “
Effect of Jet Pulsation and Duty Cycle on Film Cooling From a Single Jet on a Leading Edge Model
,”
ASME J. Turbomach.
,
128
(
3
), pp.
564
571
.10.1115/1.2185122
42.
Nagoga
,
G. P.
,
1996
, “
Effective Methods of Cooling of Blades of High Temperature Gas Turbines
,” Publishing House of Moscow Aerospace Institute, Moscow, Russia, p.
100
.
43.
Luo
,
J.
,
Rao
,
Y.
,
Yang
,
L.
,
Yang
,
M.
, and
Su
,
H.
,
2021
, “
Computational Analysis of Turbulent Flow and Heat Transfer in Latticework Cooling Structures Under Various Flow Configurations
,”
Int. J. Therm. Sci.
,
164
, p.
106912
.10.1016/j.ijthermalsci.2021.106912
44.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C.-P.
, and
Stevens
,
C. W.
,
2008
, “
In-Wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils
,”
ASME
Paper No. GT2004-54260.10.1115/GT2004-54260
45.
Ligrani
,
P. M.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rot. Machin.
,
2013
, p.
e275653
. 10.1155/2013/275653
46.
Murata
,
A.
,
Nishida
,
S.
,
Saito
,
H.
,
Iwamoto
,
K.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2012
, “
Heat Transfer Enhancement Due to Combination of Dimples, Protrusions, and Ribs in Narrow Internal Passage of Gas Turbine Blade
,”
ASME
Paper No. GT2011-45356.10.1115/GT2011-45356
47.
Lau
,
S. C.
,
Han
,
J. C.
, and
Kim
,
Y. S.
,
1989
, “
Turbulent Heat Transfer and Friction in Pin Fin Channels With Lateral Flow Ejection
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
1
), pp.
51
58
.10.1115/1.3250657
48.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.10.1016/S0065-2717(08)70020-0
49.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2009
, “
Correlation of Film Cooling Effectiveness From Thermographic Measurements at Engine Like Conditions
,”
ASME
Paper No. GT2002-30180.10.1115/GT2002-30180
50.
Bogard
,
D. G.
,
2006
, “
Film Cooling
,”
The Gas Turbine Handbook
,
U.S. Department of Energy, National Energy Technology Laboratory
, Pittsburgh, PA.
51.
Bunker
,
R. S.
,
2006
, “
Cooling Design Analysis
,”
The Gas Turbine Handbook
,
U.S. Department of Energy, National Energy Technology Laboratory
, Pittsburgh, PA.
52.
Schwarz
,
S. G.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1991
, “
The Influence of Curvature on Film Cooling Performance
,”
ASME J. Turbomach.
,
113
(
3
), pp.
472
478
.10.1115/1.2927898
53.
Moore
,
J. D.
,
Yoon
,
C.
, and
Bogard
,
D. G.
,
2019
, “
Surface Curvature Effects on Film Cooling Performance for Shaped Holes on a Model Turbine Blade
,”
ASME
Paper No. GT2019-91476.10.1115/GT2019-91476
54.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), pp.
547
554
.10.1115/1.2185674
55.
Bogard
,
D. G.
,
Snook
,
D.
, and
Kohli
,
A.
,
2008
, “
Rough Surface Effects on Film Cooling of the Suction Side Surface of a Turbine Vane
,”
ASME
Paper No. IMECE2003-42061.10.1115/IMECE2003-42061
56.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
2015
, “
Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling
,”
ASME
Paper No. 96-GT-462.10.1115/96-GT-462
57.
Abhari
,
R. S.
,
1996
, “
Impact of Rotor–Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
118
(
1
), pp.
123
133
.10.1115/1.2836593
58.
Collins
,
M.
, and
Povey
,
T.
,
2015
, “
Exploitation of Acoustic Effects in Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
102602
.10.1115/1.4030102
59.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
60.
Bunker
,
R. S.
,
2017
, “
Evolution of Turbine Cooling
,”
ASME
Paper No. GT2017-63205.10.1115/GT2017-63205
61.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.10.1115/1.1515336
62.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.10.1017/S0022112097007271
63.
Funazaki
,
K.
,
Kikuchi
,
F.
,
Tashiro
,
I.
,
Ideta
,
T.
, and
Tanaka
,
Y.
,
2018
, “
Studies on Cooling Performance of Round Cooling Holes With Various Configurations on a High-Pressure Turbine Vane
,”
ASME
Paper No. GT2018-75439.10.1115/GT2018-75439
64.
Kusterer
,
K.
,
Tekin
,
N.
,
Wüllner
,
T.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2014
, “
Nekomimi Film Cooling Holes Configuration Under Conjugate Heat Transfer Conditions
,”
ASME
Paper No. GT2014-25845.10.1115/GT2014-25845
65.
Wang
,
N.
,
Zhang
,
M.
,
Shiau
,
C.-C.
, and
Han
,
J.-C.
,
2019
, “
Film Cooling Effectiveness From Two Rows of Compound Angled Cylindrical Holes Using Pressure-Sensitive Paint Technique
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
4
), p.
042202
.10.1115/1.4042777
66.
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Effects of Exit Fan Angle on the Heat Transfer Performance of Sweeping Jet Impingement
,”
AIAA
Paper No. 2018-4886.10.2514/6.2018-4886
67.
Watson
,
T. B.
,
Vinton
,
K. R.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2019
, “
Influence of Hole Inlet Geometry on the Film Cooling Effectiveness From Shaped Film Cooling Holes
,”
ASME
Paper No. GT2019-92057.10.1115/GT2019-92057
68.
Moser
,
S.
,
Ivanisin
,
M.
,
Woisetschläger
,
J.
, and
Jericha
,
H.
,
2014
, “
Novel Blade Cooling Engineering Solution
,”
ASME
Paper No. 2000-GT-0242.10.1115/2000-GT-0242
69.
Bunker
,
R. S.
,
2009
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,”
ASME
Paper No. GT2002-30178.10.1115/GT2002-30178
70.
Kalghatgi
,
P.
, and
Acharya
,
S.
,
2019
, “
Flow Dynamics of a Film Cooling Jet Issued From a Round Hole Embedded in Contoured Crater
,”
ASME J. Turbomach.
,
141
(
8
), p.
081006
.10.1115/1.4043071
71.
Wang
,
C.-C.
, and
Roy
,
S.
,
2009
, “
Active Cooling of Turbine Blades Using Horse-Shoe Plasma Actuator
,”
AIAA
Paper No. 2009-679.10.2514/6.2009-679
72.
Abdeh
,
H.
,
Barigozzi
,
G.
,
Ravelli
,
S.
, and
Rouina
,
S.
,
2019
, “
A Parametric Investigation of Vane Showerhead Film Cooling by PSP Technique
,”
ASME
Paper No. GT2019-90019.10.1115/GT2019-90019
73.
Ritchie
,
D.
,
Click
,
A.
,
Ligrani
,
P. M.
,
Liberatore
,
F.
,
Patel
,
R.
, and
Ho
,
Y.-H.
,
2019
, “
Double Wall Cooling of an Effusion Plate With Simultaneous Cross Flow and Impingement Jet Array Internal Cooling
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091008
.10.1115/1.4043694
74.
Ngetich
,
G. C.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
Study of Film Cooling Effectiveness on a Double-Walled Effusion-Cooled Turbine Blade in a High-Speed Flow Using Pressure Sensitive Paint
,”
ASME
Paper No. GT2019-90545.10.1115/GT2019-90545
75.
Wear
,
J. D.
,
Trout
,
A. M.
, and
Smith
,
J. M.
,
1981
, “
Performance of Semi-Transportation-Cooled Liner in High-Temperature-Rise Combustors
,” NASA, Washington, DC, Technical Report No.
E-494
.https://ntrs.nasa.gov/citations/19810012548
76.
Novikov
,
A. S.
,
Meshkov
,
S. A.
, and
Sabaev
,
G. V.
,
1988
, “
Creation of High Efficiency Turbine Cooled Blades With Structural Electron Beam Coatings
,” Collection of Papers,
Electron Beam and Gas-Thermal Coatings
, Paton IEW, Kiev, Ukraine, pp.
87
96
.
77.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2020
, “
Experimental and Computational Methods for the Evaluation of Double-Wall, Effusion Cooling Systems
,”
ASME J. Turbomach.
,
142
(
11
), p.
111003
.10.1115/1.4047384
78.
Min
,
Z.
,
Parbat
,
S. N.
,
Yang
,
L.
, and
Chyu
,
M. K.
,
2019
, “
Thermal-Fluid and Mechanical Investigations of Additively Manufactured Geometries for Transpiration Cooling
,”
ASME
Paper No. GT2019-91583.10.1115/GT2019-91583
79.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
(
4
), pp.
866
874
.10.1115/1.3230352
80.
Thole
,
K. A.
, and
Knost
,
D. G.
,
2005
, “
Heat Transfer and Film-Cooling for the Endwall of a First Stage Turbine Vane
,”
Int. J. Heat Mass Transf
er,
48
(
25–26
), pp.
5255
5269
.10.1016/j.ijheatmasstransfer.2005.07.036
81.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
4
), p.
041003
.10.1115/1.4002951
82.
Shiau
,
C.-C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J.-C.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Injection Angles
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031012
.10.1115/1.4042057
83.
Lee
,
C.-P.
,
2001
, “
Turbine Blade Trailing Edge Cooling Openings and Slots
,” U.S. Patent No.
US6174135B1
.https://patents.google.com/patent/US6174135B1/en
84.
Hill
,
E. C.
,
Liang
,
G. P.
, and
Auxier
,
T.
,
1986
, “
Airfoil Trailing Edge Cooling Arrangement
,” U.S. Patent No.
US4601638A
.https://patents.google.com/patent/US4601638
85.
Cunha
,
F. J.
,
Dahmer
,
M. T.
, and
Chyu
,
M. K.
,
2006
, “
Analysis of Airfoil Trailing Edge Heat Transfer and Its Significance in Thermal-Mechanical Design and Durability
,”
ASME J. Turbomach.
,
128
(
4
), pp.
738
746
.10.1115/1.2220047
86.
Mao
,
X.
, and
Liu
,
B.
,
2017
, “
Numerical Investigation of Tip Clearance Size Effect on the Performance and Tip Leakage Flow in a Dual-Stage Counter-Rotating Axial Compressor
,”
Proc. Inst. Mech. Eng., Part G
,
231
(
3
), pp.
474
484
.10.1177/0954410016638878
87.
Bunker
,
R. S.
,
2006
, “
A Review of Turbine Blade Tip Heat Transfer
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
64
79
.10.1111/j.1749-6632.2001.tb05843.x
88.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.10.2514/1.11818
89.
Nasir
,
H.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2007
, “
Effect of Tip and Pressure Side Coolant Injection on Heat Transfer Distributions for a Plane and Recessed Tip
,”
ASME J. Turbomach.
,
129
(
1
), pp.
151
163
.10.1115/1.2366540
90.
Xue
,
S.
, and
Ng
,
W. F.
,
2018
, “
Turbine Blade Tip External Cooling Technologies
,”
Aerospace
,
5
(
3
), p.
90
.10.3390/aerospace5030090
91.
Gotterbarm
,
M. R.
,
Rausch
,
A. M.
, and
Körner
,
C.
,
2020
, “
Fabrication of Single Crystals Through a Μ-Helix Grain Selection Process During Electron Beam Metal Additive Manufacturing
,”
Metals
,
10
(
3
), p.
313
.10.3390/met10030313
92.
Angel
,
N. M.
, and
Basak
,
A.
,
2020
, “
On the Fabrication of Metallic Single Crystal Turbine Blades With a Commentary on Repair Via Additive Manufacturing
,”
J. Manuf. Mater. Process.
,
4
(
4
), p.
101
.10.3390/jmmp4040101
93.
Chakroun
,
W. M.
,
Abdel-Rahman
,
A. A.
, and
Al-Fahed
,
S. F.
,
1998
, “
Heat Transfer Augmentation for Air Jet Impinged on a Rough Surface
,”
Appl. Therm. Eng.
,
18
(
12
), pp.
1225
1241
.10.1016/S1359-4311(97)00100-2
94.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.10.1115/1.1861918
95.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Effect of Additive Manufacturing Process Parameters on Turbine Cooling
,”
ASME J. Turbomach.
,
142
(
5
), p.
051007
.10.1115/1.4046459
96.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2017
, “
Effect of In-Hole Roughness on Film Cooling From a Shaped Hole
,”
ASME J. Turbomach.
,
139
(
3
), p.
031004
.10.1115/1.4034847
97.
Salunkhe
,
S.
, and
Rajamani
,
D.
,
2023
, “
Current Trends of Metal Additive Manufacturing in the Defense, Automobile, and Aerospace Industries
,”
Advances in Metal Additive Manufacturing
,
S.
Salunkhe
,
S.
Amancio-Filho
, and
J. P.
Davim
, eds.,
Woodhead Publishing
, Cambridge, UK, pp.
147
160
.
98.
Lee
,
S.
,
Hwang
,
W.
, and
Yee
,
K.
,
2018
, “
Robust Film Cooling Hole Shape Optimization Considering Surface Roughness and Partial Hole Blockage
,”
ASME
Paper No. GT2018-76424.10.1115/GT2018-76424
99.
Schulz
,
U.
,
Leyens
,
C.
,
Fritscher
,
K.
,
Peters
,
M.
,
Saruhan-Brings
,
B.
,
Lavigne
,
O.
,
Dorvaux
,
J.-M.
,
Poulain
,
M.
,
Mévrel
,
R.
, and
Caliez
,
M.
,
2003
, “
Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings
,”
Aerosp. Sci. Technol.
,
7
(
1
), pp.
73
80
.10.1016/S1270-9638(02)00003-2
100.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Vincent
,
T.
,
Quach
,
S.
, and
Kaufman
,
E.
,
2022
, “
Experimental Investigation Into the Effect of a Ceramic Matrix Composite Surface on Film Cooling
,”
ASME J. Turbomach.
,
144
(
12
), p.
121006
.10.1115/1.4055332
You do not currently have access to this content.