Abstract

Swirl stabilized combustion is a common technique used in gas turbine engine combustors and is accomplished by introducing swirl into the inlet flow, which enhances mixing and stabilizes the combustion event. Coaxial swirlers introduce the fuel and air axially through concentric inlets and use vanes to impart a tangential component to either the fuel, air, or both flows. The present study conducted a parametric analysis of coaxial swirler design by manufacturing an array of 14 coaxial swirlers scaled for use in low flow, small engine operations which incorporated the same base design but varied the swirl number, Sn, by changing the vane angle between 0 deg and 63 deg, vane count between four and ten, and vane shape between traditional and helical. Each design was experimentally evaluated using nonpremixed air and propane at different flow conditions to correlate swirler design with lean blowout limits, pressure loss, and flame liftoff. Lean blowout was primarily influenced by swirl number, while vane count and shape had significant impact at Sn = 0.8 but little impact at Sn = 1.5. Pressure loss was unchanged below a Sn of 0.6, and unlike lean blowout, Sn had little impact at 0.8 but significant impact at 1.5. Additionally, an initial equation correlating pressure loss with swirler number, vane count, and mass flowrate was developed. Finally, flame liftoff was mainly driven by swirl number, with vane count and shape the next significant design parameters.

References

1.
Chen
,
R.-H.
, and
Driscoll
,
J. F.
,
1989
, “
The Role of the Recirculation Vortex in Improving Fuel-Air Mixing Within Swirling Flames
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
531
540
.10.1016/S0082-0784(89)80060-8
2.
An
,
Q.
,
Kwong
,
W. Y.
,
Geraedts
,
B. D.
, and
Steinberg
,
A. M.
,
2016
, “
Coupled Dynamics of Lift-Off and Precessing Vortex Core Formation in Swirl Flames
,”
Combust. Flame
,
168
, pp.
228
239
.10.1016/j.combustflame.2016.03.011
3.
Durox
,
D.
,
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Morenton
,
P.
,
Viallon
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Flame Dynamics of a Variable Swirl Number System and Instability Control
,”
Combust. Flame
,
160
(
9
), pp.
1729
1742
.10.1016/j.combustflame.2013.03.004
4.
Penanhoat
,
O.
,
2006
, “
Low Emissions Combustor Technology Developments in the European Programmes LOPOCOTEP and TLC
,” 25th Congress of International Council of the Aeronautical Sciences, Hamburg, Germany, Sept. 3–8, Paper No.
ICAS 2006-5.5.2
.https://www.icas.org/ICAS_ARCHIVE/ICAS2006/PAPERS/483.PDF
5.
Dunn-Rankin
,
D.
,
2008
,
Lean Combustion: Technology and Control
,
Academic Press
, Washington, DC.
6.
Konle
,
M.
, and
Sattelmayer
,
T.
,
2009
, “
Interaction of Heat Release and Vortex Breakdown During Flame Flashback Driven by Combustion Induced Vortex Breakdown
,”
Exp. Fluids: Exp. Methods Their Appl. to Fluid Flow
,
47
(
4–5
), pp.
627
635
.10.1007/s00348-009-0679-5
7.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
8.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
9.
Lenzi
,
T.
,
Picchi
,
A.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2022
, “
Analysis of Swirl Number Effects on Effusion Flow Behaviour Using Time Resolved Particle Image Velocimetry
,”
ASME. J. Turbomach.
, 144(8), p.
081001
.10.1115/1.4053490
10.
Syred
,
N.
, and
Beer
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.10.1016/0010-2180(74)90057-1
11.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
CRC Press, Boca
Raton, FL
.
12.
Markovich
,
D. M.
,
Abdurakipov
,
S. S.
,
Chikishev
,
L. M.
,
Dulin
,
V. M.
, and
Hanjalic
,
K.
,
2014
, “
Comparative Analysis of Low- and High-Swirl Confined Flames and Jets by Proper Orthogonal and Dynamic Mode Decompositions
,”
Phys. Fluids
,
26
(
6
), p.
065109
.10.1063/1.4884915
13.
Ranjan
,
R.
,
Panchal
,
A.
,
Hannebique
,
G.
, and
Menon
,
S.
,
2016
, “
Towards Numerical Prediction of Jet Fuels Sensitivity of Flame Dynamics in a Swirl Combustion System
,”
AIAA
Paper No. 2016-4895.10.2514/6.2016-4895
14.
Chterev
,
I.
,
Foley
,
C. W.
,
Foti
,
D.
,
Kostka
,
S.
,
Caswell
,
A. W.
,
Jiang
,
N.
,
Lynch
,
A.
,
Noble
,
D. R.
,
Menon
,
S.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Flame and Flow Topologies in an Annular Swirling Flow
,”
Combust. Sci. Technol.
,
186
(
8
), pp.
1041
1074
.10.1080/00102202.2014.882916
15.
Johnson
,
M.
,
Littlejohn
,
D.
,
Nazeer
,
W.
,
Smith
,
K.
, and
Cheng
,
R.
,
2005
, “
A Comparison of the Flowfields and Emissions of High-Swirl Injectors and Low-Swirl Injectors for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2867
2874
.10.1016/j.proci.2004.07.040
16.
Chan
,
C. K.
,
Lau
,
K. S.
,
Chin
,
W. K.
, and
Cheng
,
R. K.
,
1992
, “
Freely Propagating Open Premixed Turbulent Flames Stabilized by Swirl
,”
Proceedings of the Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute
, University of Sydney, Sydney, Australia, pp.
511
518
.10.1016/S0082-0784(06)80065-2
17.
Cheng
,
R. K.
,
1995
, “
Velocity and Scalar Characteristics of Premixed Turbulence Flames Stabilized by Weak Swirl
,”
Combust. Flame
,
101
(
1–2
), pp.
1
14
.10.1016/0010-2180(94)00196-Y
18.
Cheng
,
R. K.
,
Fable
,
S. A.
,
Schmidt
,
D.
,
Arellano
,
L.
, and
Smith
,
K. O.
,
2001
, “
Development of a Low Swirl Injector Concept for Gas Turbines
,” Proceedings of the 2001 International Joint Power Conference,
New Orleans, LA
,
June 4–7
, Paper No.
IJPGC2001/FACT-19055
.https://escholarship.org/uc/item/16d070nw
19.
Lilley
,
D. G.
,
1977
, “
Swirl Flows in Combustion: A Review
,”
AIAA J.
,
15
(
8
), pp.
1063
1078
.10.2514/3.60756
20.
Parammasivam
,
K. M.
,
D
,
D.
,
Gunasekar
,
S.
, and
Basidh
,
A.
,
2016
, “
Computational Analysis of Flame Stabilization Using Strong Swirl for Afterburner Applications
,” AIAA paper No. 2016-4558.10.2514/6.2016-4558
21.
Somarathne
,
K. D. K. A.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2016
, “
Numerical Investigation on the Combustion Characteristics of Turbulent Premixed Ammonia/Air Flames Stabilized by a Swirl Burner
,”
J. Fluid Sci. Technol.
,
11
(
4
), pp.
JFST0026
JFST0026
.10.1299/jfst.2016jfst0026
22.
Taamallah
,
S.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2016
, “
Turbulent Flame Stabilization Modes in Premixed Swirl Combustion: Physical Mechanism and Karlovitz Number-Based Criterion
,”
Combust. Flame
,
166
, pp.
19
33
.10.1016/j.combustflame.2015.12.007
23.
Feikema
,
D.
,
Chen
,
R.-H.
, and
Driscoll
,
J. F.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
Combust. Flame
,
80
(
2
), pp.
183
195
.10.1016/0010-2180(90)90126-C
24.
Hayakawa
,
A.
,
Arakawa
,
Y.
,
Mimoto
,
R.
,
Somarathne
,
K. K. A.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2017
, “
Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
14010
14018
.10.1016/j.ijhydene.2017.01.046
25.
Staton
,
B. M.
,
Goss
,
L. P.
,
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2020
, “
Design, Analysis, and Manufacture of an Axial Length-Saving Disk-Oriented Engine
,”
AMSE J. Eng. Gas Turbines Power
,
143
(
1
), p.
011001
.10.1115/1.4048085
26.
DeMarco
,
K. J.
,
2023
, “
Combustion Characteristics, Gravity Effects, and Ram Air Cooling in Compact Combustors
,” Master's thesis,
Air Force Institute of Technology
,
WPAFB, OH
.
You do not currently have access to this content.