Abstract

This work proposes an accurate and efficient surrogate modeling method for predicting combustion field in a gas-turbine combustor. The method integrates proper orthogonal decomposition-based dimensional reduction, and Gaussian process regression, in conjunction with the similarity-based sample processing technique. The design parameters of concern include fuel mass flowrate and swirler vane angle. Global surrogate models (GSMs) based on proper orthogonal decomposition and kriging produce significant errors for spatial emulation of methane concentration and turbulent kinetic energy (TKE), which is found to be largely attributed to the feature disparity of sample data at different design points. The Tanimoto coefficient is introduced to identify the similarity relation of the sample design points. The similarity-based sample processing method leverages the techniques of radial partitioning, azimuthal rotation, and sample similarity clustering to enhance the similarity among samples. The radial partitioning divides the physical fields into subzones according to the peak and trough characteristics along the radial direction. Local surrogate models (LSMs) are then adaptively constructed in the subzones, through azimuthal rotation for the methane concentration field and sample similarity clustering for the TKE field. The results show that the LSMs reduce the average prediction error of the CH4 concentration field from 19.56% to 8.16% and the TKE field from 93.75% to 9.12% compared to the GSMs. The present method can effectively support the surrogate modeling of combustors with complex variations of geometric structures and flow physics.

References

1.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.10.1016/j.paerosci.2005.02.001
2.
Forrester
,
A. I.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.10.1016/j.paerosci.2008.11.001
3.
Yondo
,
R.
,
Andrés
,
E.
, and
Valero
,
E.
,
2018
, “
A Review on Design of Experiments and Surrogate Models in Aircraft Real-Time and Many-Query Aerodynamic Analyses
,”
Prog. Aerosp. Sci.
,
96
, pp.
23
61
.10.1016/j.paerosci.2017.11.003
4.
Rowley
,
C. W.
, and
Dawson
,
S. T.
,
2017
, “
Model Reduction for Flow Analysis and Control
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
387
417
.10.1146/annurev-fluid-010816-060042
5.
Mak
,
S.
,
Sung
,
C. L.
,
Wang
,
X.
,
Yeh
,
S. T.
,
Chang
,
Y. H.
,
Joseph
,
V. R.
,
Yang
,
V.
, and
Wu
,
C. J.
,
2018
, “
An Efficient Surrogate Model for Emulation and Physics Extraction of Large Eddy Simulations
,”
J. Am. Stat. Assoc.
,
113
(
524
), pp.
1443
1456
.10.1080/01621459.2017.1409123
6.
Wang
,
X.
,
Yeh
,
S.-T.
,
Chang
,
Y.-H.
, and
Yang
,
V.
,
2018
, “
A High-Fidelity Design Methodology Using LES-Based Simulation and POD-Based Emulation: A Case Study of Swirl Injectors
,”
Chin. J. Aeronaut.
,
31
(
9
), pp.
1855
1869
.10.1016/j.cja.2018.07.004
7.
Yeh
,
S. T.
,
Wang
,
X.
,
Sung
,
C. L.
,
Mak
,
S.
,
Chang
,
Y. H.
,
Zhang
,
L.
,
Wu
,
C. J.
, and
Yang
,
V.
,
2018
, “
Common Proper Orthogonal Decomposition-Based Spatiotemporal Emulator for Design Exploration
,”
AIAA J.
,
56
(
6
), pp.
2429
2442
.10.2514/1.J056640
8.
Chang
,
Y. H.
,
Zhang
,
L.
,
Wang
,
X.
,
Yeh
,
S. T.
,
Mak
,
S.
,
Sung
,
C. L.
,
Wu
,
C. J.
, and
Yang
,
V.
,
2019
, “
Kernel-Smoothed Proper Orthogonal Decomposition-Based Emulation for Spatiotemporally Evolving Flow Dynamics Prediction
,”
AIAA J.
,
57
(
12
), pp.
5269
5280
.10.2514/1.J057803
9.
Wang
,
X.
,
Chang
,
Y. H.
,
Li
,
Y.
,
Yang
,
V.
, and
Su
,
Y. H.
,
2021
, “
Surrogate-Based Modeling for Emulation of Supercritical Injector Flow and Combustion
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6393
6401
.10.1016/j.proci.2020.06.303
10.
Geng
,
J.
,
Wang
,
X.
,
Li
,
J.
, and
Qi
,
H.
,
2023
, “
Surrogate Model of Combustor Flow Mixing Process
,”
J. Tsinghua Univ. (Sci. Technol.)
,
63
, pp.
633
641
(in Chinese).10.16511/j.cnki.qhdxxb.2023.25.030
11.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C. H.
, and
Tu
,
J.
,
2007
, “
A Framework for Validation of Computer Models
,”
Technometrics
,
49
(
2
), pp.
138
154
.10.1198/004017007000000092
12.
Benner
,
P.
,
Gugercin
,
S.
, and
Willcox
,
K.
,
2015
, “
A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems
,”
SIAM Rev.
,
57
(
4
), pp.
483
531
.10.1137/130932715
13.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
14.
Iuliano
,
E.
, and
Quagliarella
,
D.
,
2013
, “
Proper Orthogonal Decomposition, Surrogate Modelling and Evolutionary Optimization in Aerodynamic Design
,”
Comput. Fluids
,
84
, pp.
327
350
.10.1016/j.compfluid.2013.06.007
15.
Bui-Thanh
,
T.
,
Damodaran
,
M.
, and
Willcox
,
K.
,
2003
, “
Proper Orthogonal Decomposition Extensions for Parametric Applications in Compressible Aerodynamics
,”
AIAA
Paper No. 2003-4213.10.2514/6.2003-4213
16.
Ly
,
H. V.
, and
Tran
,
H. T.
,
2001
, “
Modeling and Control of Physical Processes Using Proper Orthogonal Decomposition
,”
Math. Comput. Modell.
,
33
(
1–3
), pp.
223
236
.10.1016/S0895-7177(00)00240-5
17.
Audouze
,
C.
,
De Vuyst
,
F.
, and
Nair
,
P. B.
,
2009
, “
Reduced-Order Modeling of Physicalized PDEs Using Time-Space-Physical Principal Component Analysis
,”
Int. J. Numer. Methods Eng.
,
80
(
8
), pp.
1025
1057
.10.1002/nme.2540
18.
Swischuk
,
R.
,
Mainini
,
L.
,
Peherstorfer
,
B.
, and
Willcox
,
K.
,
2019
, “
Projection-Based Model Reduction: Formulations for Physics-Based Machine Learning
,”
Comput. Fluids
,
179
, pp.
704
717
.10.1016/j.compfluid.2018.07.021
19.
Huang
,
C.
,
Xu
,
J.
,
Duraisamy
,
K.
, and
Merkle
,
C.
,
2018
, “
Exploration of Reduced-Order Models for Rocket Combustion Applications
,”
AIAA
Paper No. 2018-1183.10.2514/6.2018-1183
20.
Wang
,
Q.
,
Hesthaven
,
J. S.
, and
Ray
,
D.
,
2019
, “
Non-Intrusive Reduced Order Modeling of Unsteady Flows Using Artificial Neural Networks With Application to a Combustion Problem
,”
J. Comput. Phys.
,
384
, pp.
289
307
.10.1016/j.jcp.2019.01.031
21.
Huang
,
C.
,
Duraisamy
,
K.
, and
Merkle
,
C. L.
,
2019
, “
Investigations and Improvement of Robustness of Reduced-Order Models of Reacting Flow
,”
AIAA J.
,
57
(
12
), pp.
5377
5389
.10.2514/1.J058392
22.
Swischuk
,
R.
,
Kramer
,
B.
,
Huang
,
C.
, and
Willcox
,
K.
,
2020
, “
Learning Physics-Based Reduced-Order Models for a Single-Injector Combustion Process
,”
AIAA J.
,
58
(
6
), pp.
2658
2672
.10.2514/1.J058943
23.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion—Alternative Fuels and Emissions
,
CRC Press, Taylor and Francis Group
,
New York
, pp.
140
147
.
24.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
25.
Borsuk
,
A.
,
Williams
,
J.
,
Meadows
,
J.
, and
Agrawal
,
A. K.
,
2015
, “
Swirler Effects on Passive Control of Combustion Noise and Instability in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041504
.10.1115/1.4028613
26.
Sequera
,
D.
, and
Agrawal
,
A. K.
,
2012
, “
Passive Control of Noise and Instability in a Swirl-Stabilized Combustor With the Use of High Strength Porous Insert
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
051505
.10.1115/1.4004740
27.
Yang
,
J.
,
Liu
,
C.
,
Liu
,
F.
,
Mu
,
Y.
, and
Xu
,
G.
,
2020
, “
Effect of the Swirl Intensity of Pilot Inner Swirler on the Combustion Stability of a Lean Staged Injector With a Prefilm Atomizer
,”
ASME J. Eng. Gas Turbines Power
,
142
(
8
), p.
081003
.10.1115/1.4047695
28.
Peherstorfer
,
B.
,
Butnaru
,
D.
,
Willcox
,
K.
, and
Bungartz
,
H. J.
,
2014
, “
Localized Discrete Empirical Interpolation Method
,”
SIAM J. Sci. Comput.
,
36
(
1
), pp.
A168
A192
.10.1137/130924408
29.
Amsallem
,
D.
,
Zahr
,
M. J.
, and
Farhat
,
C.
,
2012
, “
Nonlinear Model Order Reduction Based on Local Reduced‐Order Bases
,”
Int. J. Numer. Methods Eng.
,
92
(
10
), pp.
891
916
.10.1002/nme.4371
30.
Peng
,
L.
, and
Mohseni
,
K.
,
2016
, “
Nonlinear Model Reduction Via a Locally Weighted POD Method
,”
Int. J. Numer. Methods Eng.
,
106
(
5
), pp.
372
396
.10.1002/nme.5124
31.
Amsallem
,
D.
,
Zahr
,
M. J.
, and
Washabaugh
,
K.
,
2015
, “
Fast Local Reduced Basis Updates for the Efficient Reduction of Nonlinear Systems With Hyper-Reduction
,”
Adv. Comput. Math.
,
41
(
5
), pp.
1187
1230
.10.1007/s10444-015-9409-0
32.
Michael
,
R. A.
,
1973
,
Cluster Analysis for Applications
,
Academic Press
,
New York
.
33.
Trevor
,
H.
,
Robert
,
T.
, and
Friedman
,
J. H.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer
,
New York
.
34.
Arthur
,
D.
, and
Vassilvitskii
,
S.
,
2006
, “
k-Means++: The Advantages of Careful Seeding
,”
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA'07
, New Orleans, LA, Jan. 7–9, pp.
1027
1035
.https://theory.stanford.edu/~sergei/papers/kMeansPP-soda.pdf
35.
Sacks
,
J.
,
Schiller
,
S. B.
, and
Welch
,
W. J.
,
1989
, “
Designs for Computer Experiments
,”
Technometrics
,
31
(
1
), pp.
41
47
.10.1080/00401706.1989.10488474
36.
Santner
,
T. J.
,
Williams
,
B.
,
Notz
,
W.
,
Santner
,
T. J.
,
Williams
,
B. J.
,
Notz
,
W. I.
, and
Williams
,
B. J.
,
2003
,
The Design and Analysis of Computer Experiments
, Vol.
1
,
Springer
,
New York
.
37.
Fang
,
K. T.
,
Li
,
R.
, and
Sudjianto
,
A.
,
2005
,
Design and Modeling for Computer Experiments
,
Chapman and Hall/CRC, Taylor & Francis Group
,
Boca Raton, FL
.
38.
Morris
,
M. D.
, and
Mitchell
,
T. J.
,
1995
, “
Exploratory Designs for Computational Experiments
,”
J. Stat. Plann. Inference
,
43
(
3
), pp.
381
402
.10.1016/0378-3758(94)00035-T
39.
Husslage
,
B. G. M.
,
Rennen
,
G.
,
van Dam
,
E. R.
, and
Den Hertog
,
D.
,
2011
, “
Space-Filling Latin Hypercube Designs for Computer Experiments
,”
Optim. Eng.
,
12
(
4
), pp.
611
630
.10.1007/s11081-010-9129-8
40.
Dalbey
,
K.
, and
Karystinos
,
G.
,
2010
, “
Fast Generation of Space-Filling Latin Hypercube Sample Designs
,”
AIAA
Paper No. 2010-9085.10.2514/6.2010-9085
41.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.10.1080/00401706.2000.10485979
42.
Jiaqiang
,
E.
,
Liu
,
H.
,
Zhao
,
X.
,
Han
,
D.
,
Peng
,
Q.
,
Zuo
,
W.
,
Meng
,
T.
, and
Qiu
,
R.
,
2018
, “
Investigation on the Combustion Performance Enhancement of the Premixed Methane/Air in a Two-Step Micro Combustor
,”
Appl. Therm. Eng.
,
141
, pp.
114
125
.10.1016/j.applthermaleng.2018.05.101
43.
Law
,
C. K.
,
2010
,
Combustion Physics
,
Cambridge University Press
,
New York
.
44.
Shepard
,
D.
,
1968
, “A Two-Dimensional Interpolation Function for Irregularly-Spaced Data,”
Proceedings of the 23rd ACM National Conference
, New York, Aug. 27–28, pp.
517
524
.10.1145/800186.810616
45.
Rogers
,
D. J.
, and
Tanimoto
,
T. T.
,
1960
, “
A Computer Program for Classifying Plants: The Computer Is Programmed to Simulate the Taxonomic Process of Comparing Each Case With Every Other Case
,”
Science
,
132
(
3434
), pp.
1115
1118
.10.1126/science.132.3434.1115
You do not currently have access to this content.