Abstract

Postcombustion capture (PCC) by means of mono-ethanolamine and hydrogen co-firing, combined with exhaust gas recirculation (EGR), were applied to a typical 2 × 1 combined cycle (CC) with the goal of reaching net-zero CO2 emissions. The novelty lies in integrating decarbonization solutions into the daily operation of the CC, when power generation is adjusted according to fluctuations in electricity demand, throughout two representative days in summer and winter. More specifically, off-design thermodynamic modeling was adapted to incorporate a multivariable optimization problem to find the maximum power plant efficiency as a function of the following decision variables: (1) load of each gas turbine (GT), spanning from minimum turndown to full load; (2) EGR rate, in a range that depends on the fuel type: [0; 0.4] for 100% natural gas (NG) versus [0; 0.55] when hydrogen is fed to the combustor; with the constraint of net power output equal to electricity demand, for given environmental conditions. Suggestions were made to mitigate the energy penalty due to decarbonization in the load-following operation mode, taking the integration of mono-ethanolamine CO2 capture into the NG-fired CC as a benchmark. The solution in which EGR combines optimally with hydrogen in the fuel mixture, with the addition of PCC to abate residual CO2 emissions, has proven to be the most efficient way to provide dispatchable clean energy, especially in cold climates.

References

1.
EIA
, 2023, “
TODAY IN ENERGY, New Natural Gas-Fired Capacity Additions Expected to Total 8.6 Gigawatts in 2023
,” EIA, Washington, DC, accessed Oct. 15, 2023, https://www.eia.gov/todayinenergy/detail.php?id=60663#
2.
GlobalData
, 2024, “
Power Plant Profile: New Tees Combined Cycle Power Plant, UK
,” GlobalData, London, UK, accessed Oct. 15, 2023, https://www.power-technology.com/data-insights/power-plant-profile-new-tees-combined-cycle-power-plant-uk/?cf-view
3.
Enerdata
, 2023, “
Shanghai Electric Will Build Two CCGT Units at the Al-Mansuriya Gas Plant (Iraq)
,” Enerdata, Grenoble, France, accessed Oct. 17, 2023, https://www.enerdata.net/publications
4.
JCN Newswire,
2023, “Mitsubishi Power Receives Order for Two Gas Turbines for 1600 MW Class GTCC Power Plant in Uzbekistan,” Mitsubishi Heavy Industries, Tokyo, Japan, accessed Oct. 20, 2023,
https://www.jcnnewswire.com/pressrelease
5.
de Groot
,
M.
,
Crijns-Graus
,
W.
, and
Harmsen
,
R.
,
2017
, “
The Effects of Variable Renewable Electricity on Energy Efficiency and Full Load Hours of Fossil-Fired Power Plants in the European Union
,”
Energy
,
138
, pp.
575
589
.10.1016/j.energy.2017.07.085
6.
Bui
,
M.
,
Sunny
,
N.
, and
Mac Dowell
,
N.
,
2023
, “
The Prospects of Flexible Natural Gas-Fired CCGT Within a Green Taxonomy
,”
iScience
,
26
(
8
), p.
107382
.10.1016/j.isci.2023.107382
7.
Hentschel
,
J.
,
Babić
,
U.
, and
Spliethoff
,
H.
,
2016
, “
A Parametric Approach for the Valuation of Power Plant Flexibility Options
,”
Energy Rep.
,
2
, pp.
40
47
.10.1016/j.egyr.2016.03.002
8.
MarkWideResearch
, 2023, “
Combined Cycle Power Plant Market Analysis 2023–2030, Energy & Power
,” MarkWide Research, Torrance, CA, accessed Oct. 28, 2023, https://markwideresearch.com/combined-cycle-power-plant-market/
9.
European Environment Agency
,
2023
, “
Flexibility Solutions to Support a Decarbonised and Secure EU Electricity System
,” European Environment Agency, Copenhagen, Denmark, pp.
1
38
.
10.
Spath
,
P. L.
, and
Mann
,
K. M.
,
2000
, “
Life Cycle Assessment of a Natural Gas Combined-Cycle Power Generation System
,” NREL, Golden, CO, Report No.
NREL/TP-570-27715
.https://www.nrel.gov/docs/fy00osti/27715.pdf
11.
McKinsey & Company
,
2021
, “
Net Zero by 2035: A Pathway to Rapidly Decarbonize the U.S. Power System
,” McKinsey & Co Inc, New York.
12.
Australian Energy Council
,
2022
, “
Zero Emissions Dispatchability
,” Discussion Paper Series, Australian Energy Council, Melbourne, Australia.
13.
Green Alliance
,
2023
, “
The Building Blocks of a Secure 2035 Zero Carbon Power-System
,” The Green Alliance Trust, London, UK.
14.
Sepulveda
,
N. A.
,
Jenkins
,
J. D.
,
de Sisternes
,
F. J.
, and
Lester
,
R. K.
,
2018
, “
The Role of Firm Low-Carbon Electricity Resources in Deep Decarbonization of Power Generation
,”
Joule
,
2
(
11
), pp.
2403
2420
.10.1016/j.joule.2018.08.006
15.
Williams
,
J. H.
,
Jones
,
R. A.
,
Haley
,
B.
,
Kwok
,
G.
,
Hargreaves
,
J.
,
Farbes
,
J.
, and
Torn
,
M. S.
,
2021
, “
Carbon‐Neutral Pathways for the United States
,”
AGU Adv.
,
2
(
1
), p.
e2020AV000284
.10.1029/2020AV000284
16.
Baik
,
E.
,
Chawla
,
K. P.
,
Jenkins
,
J. D.
,
Kolster
,
C.
,
Patankar
,
N. S.
,
Olson
,
A.
,
Benson
,
S. M.
, and
Long
,
J. C. S.
,
2021
, “
What Is Different About Different Net-Zero Carbon Electricity Systems?
,”
Energy Clim. Change
,
2
, p.
100046
.10.1016/j.egycc.2021.100046
17.
Frontier Economics Ltd.
,
2023
, “
The Need for Clean Flexibility in Europe's Electricity System
,” Frontier Economics Ltd, London, UK, accessed Oct. 30, 2023, www.frontier-economics.com
18.
Blanford
,
G.
,
Wilson
,
T.
, and
Bistline
,
J.
,
2021
, “
Powering Decarbonization: Strategies for Net-Zero CO2 Emissions
,” Electric Power Research Institute, Palo Alto, CA, pp.
1
20
.https://wdeawebsite.blob.core.windows.net/usrfiles/documents/powering%20decarbonization_%20strategies%20for%20net_zero%20co2%20emissions.pdf
19.
Peridas
,
G.
, and
Schmidt
,
B. M.
,
2021
, “
The Role of Carbon Capture and Storage in the Race to Carbon Neutrality
,”
Electr. J.
,
34
(
7
), p.
106996
.10.1016/j.tej.2021.106996
20.
Global CCS Institute
,
2022
, “
Global Status of CCS 2022
,” Global Carbon Capture and Storage Institute Ltd, Docklands, Australia.
21.
DOE/NETL
,
2022
, “
Point Source Carbon Capture Project Map
,”
U.S. Department of Energy, National Energy Technology Laboratory
,
Washington, DC
, accessed Oct. 28, 2023, https://netl.doe.gov/carbon-management/carbon-capture/psc-map
22.
Subramanian
,
N.
, and
Madejski
,
P.
,
2023
, “
Analysis of CO2 Capture Process From Flue-Gases in Combined Cycle Gas Turbine Power Plant Using Post-Combustion Capture Technology
,”
Energy
,
282
, p.
128311
.10.1016/j.energy.2023.128311
23.
Awtry
,
A.
,
Fine
,
N.
,
Tomey
,
J.
,
Dinsdale
,
B.
,
Atcheson
,
J.
,
Brown
,
A. E.
, and
Meuleman
,
E.
,
2022
, “
Design and Costing of an ION Clean Energy CO2 Capture Plant Retrofitted to an 857 MW Natural Gas Combined Cycle Power Station
,”
Proceedings of the16th International Conference on Greenhouse Gas Control Technologies GHGT-16
, Lyon, France, Oct. 23–27, pp.
1
9
.10.2139/ssrn.4288012
24.
Calpine
, 2023, “Project Enterprise at Calpine LMEC,” Calpine LMEC, Pittsburg, CA, accessed Nov. 2, 2023, https://calpineca.com/wp-content/uploads/2023/08/Calpine-CCUS-Enterprise-.pdf
25.
Rezazadeh
,
F.
,
Gale
,
W. F.
,
Hughes
,
K. J.
, and
Pourkashanian
,
M.
,
2015
, “
Performance Viability of a Natural Gas Fired Combined Cycle Power Plant Integrated With Post-Combustion CO2 Capture at Part-Load and Temporary Non-Capture Operations
,”
Int. J. Greenhouse Gas Control
,
39
, pp.
397
406
.10.1016/j.ijggc.2015.06.003
26.
Oh
,
S. Y.
, and
Kim
,
J. K.
,
2018
, “
Operational Optimization for Part-Load Performance of Amine-Based Post-Combustion CO2 Capture Processes
,”
Energy
,
146
, pp.
57
66
.10.1016/j.energy.2017.06.179
27.
Verhaeghe
,
A.
,
Dubois
,
L.
,
Bricteux
,
L.
,
Thomas
,
D.
,
Blondeau
,
J.
, and
De Paepe
,
W.
,
2023
, “
Carbon Capture Performance Assessment Applied to Combined Cycle Gas Turbine Under Part-Load Operation
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041009
.10.1115/1.4055664
28.
Montañés
,
R. M.
,
GarÐarsdóttir
,
S. Ó.
,
Normann
,
F.
,
Johnsson
,
F.
, and
Nord
,
L. O.
,
2017
, “
Demonstrating Load-Change Transient Performance of a Commercial-Scale Natural Gas Combined Cycle Power Plant With Post-Combustion CO2 Capture
,”
Int. J. Greenhouse Gas Control
,
63
, pp.
158
174
.10.1016/j.ijggc.2017.05.011
29.
Ceccarelli
,
N.
,
van Leeuwen
,
M.
,
Wolf
,
T.
,
van Leeuwen
,
P.
,
van der Vaart
,
R.
,
Maas
,
W.
, and
Ramos
,
A.
,
2014
, “
Flexibility of Low-CO2 Gas Power Plants: Integration of the CO2 Capture Unit With CCGT Operation
,”
Energy Procedia
,
63
, pp.
1703
1726
.10.1016/j.egypro.2014.11.179
30.
BEIS
,
2020
, “
Start Up and Shut Down Times of Power Carbon Capture, Usage and Storage (CCUS) Facilities
,” Department for Business, Energy & Industrial Strategy, AECOM, Bristol, UK, BEIS Research Paper No.
2020/031
.https://assets.publishing.service.gov.uk/media/5f9543d3d3bf7f35eea5c977/AECOM_report_final_version_clean_inc_appendices.pdf
31.
Bui
,
M.
,
Mac Dowell
,
N.
,
Campbell
,
M.
, and
Knarvik
,
A. B. N.
,
2022
, “
Start-Up and Shutdown Protocol for Natural Gas-Fired Power Stations With CO2 Capture
,” IEAGHG, IEA Greenhouse Gas R&D, Cheltenham, UK, Technical Report No.
2022-08
.https://assets.publishing.service.gov.uk/media/5f9543d3d3bf7f35eea5c977/AECOM_report_final_version_clean_inc_appendices.pdf
32.
Tait
,
P.
,
Buschle
,
B.
,
Ausner
,
I.
,
Valluri
,
P.
,
Wehrli
,
M.
, and
Lucquiaud
,
M.
,
2016
, “
A Pilot-Scale Study of Dynamic Response Scenarios for the Flexible Operation of Post-Combustion CO2 Capture
,”
Int. J. Greenhouse Gas Control
,
48
, pp.
216
233
.10.1016/j.ijggc.2015.12.009
33.
Bui
,
M.
,
Flø
,
N. E.
,
de Cazenove
,
T.
, and
Mac Dowell
,
N.
,
2020
, “
Demonstrating Flexible Operation of the Technology Centre Mongstad (TCM) CO2 Capture Plant
,”
Int. J. Greenhouse Gas Control
,
93
, p.
102879
.10.1016/j.ijggc.2019.102879
34.
Perez
,
V.
,
2023
, “
Natural Gas Cleanliness
,” Siemens Energy Global GmbH & Co., Munich, Germany.
35.
Öberg
,
S.
,
Odenberger
,
M.
, and
Johnsson
,
F.
,
2022
, “
Exploring the Competitiveness of Hydrogen-Fueled Gas Turbines in Future Energy Systems
,”
Int. J. Hydrogen Energy
,
47
(
1
), pp.
624
644
.10.1016/j.ijhydene.2021.10.035
36.
Bohan
,
K.
,
Klapdor
,
E. V.
,
Prade
,
B.
,
Haeggmark
,
A.
,
Bulat
,
G.
,
Prasad
,
N.
,
Welch
,
M.
,
Adamsson
,
P.
, and
Johnke
T.
,
2020
, “
Hydrogen Power With Siemens Gas Turbines
,” Siemens Gas and Power GmbH & Co. KG., Erlangen, Germany.https://www.infrastructureasia.org/-/media/Articlesfor-ASIA-Panel-2021/Siemens-Energy---Hydrogen-Power-with-Siemens-Gas-Turbines.ashx
37.
Mitsubishi Heavy Industries, Ltd., 2021, “
Hydrogen Power Generation Handbook, METP-01GT02E1-A-0
,” Mitsubishi Heavy Industries, Ltd., Energy Systems, Yokohama, Kanagawa, Japan.https://solutions.mhi.com/sites/default/files/assets/pdf/et-en/hydrogen_powerhandbook.pdf
38.
Gülen
,
S. C.
,
Singh
,
R.
, and
Banerjee
,
P.
,
2023
, “
Hydrogen and Gas Turbines—A Rational Approach
,”
ASME
Paper No. GT2023-102263.10.1115/GT2023-102263
39.
Steele
,
R. C.
,
Martz
,
T. D.
,
Ettlinger
,
A.
,
Zandes
,
T.
,
Alexander
,
M. J.
,
Hockman
,
B. K.
, and
Goldmeer
,
J.
,
2023
, “
Hydrogen Co-Firing Demonstration at New York Power Authority Brentwood Site: GE LM6000 Gas Turbine
,”
ASME
Paper No. GT2023-101283.10.1115/GT2023-101283
40.
Harper
,
J.
,
Cloyd
,
S.
,
Pigon
,
T.
,
Thomas
,
B.
,
Wilson
,
J.
,
Johnson
,
E.
, and
Noble
,
D. R.
,
2023
, “
Hydrogen Co-Firing Demonstration at Georgia Power's Plant McDonough: M501G Gas Turbine
,”
ASME
Paper No. GT2023-102660.10.1115/GT2023-102660
41.
Blaette
,
L.
,
Schmitz
,
U.
,
Streb
,
H.
, and
Vogtmann
,
D.
,
2023
, “
SGT5-4000F Hydrogen Capability–High Pressure Combustion Rig Tests
,”
ASME
Paper No. GT2023-103574.10.1115/GT2023-103574
42.
Berg
,
A.
, and
Magnusson
,
R.
,
2023
, “
Fleet Experience of SGT-600 (24 MW) DLE Gas Turbine With Over 60% H2 in Natural Gas
,”
ASME
Paper No. GT2023-103650.10.1115/GT2023-103650
43.
Pennell
,
D.
,
Tay-Wo-Chong
,
L.
,
Smith
,
R.
,
Sierra Sanchez
,
P.
, and
Ciani
,
A.
,
2023
, “
GT36 First Stage Development Enabling Load and Fuel (H2) Flexibility With Low Emissions
,”
ASME
Paper No. GT2023-103568.10.1115/GT2023-103568
44.
Douglas
,
C. M.
,
Shaw
,
S. L.
,
Martz
,
T. D.
,
Steele
,
R. C.
,
Noble
,
D. R.
,
Emerson
,
B. L.
, and
Lieuwen
,
T. C.
,
2022
, “
Pollutant Emissions Reporting and Performance Considerations for Hydrogen–Hydrocarbon Fuels in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091003
.10.1115/1.4054949
45.
Anton
,
B.
,
2023
, “
Duke Energy and GE Vernova Collaborate on System Capable of Producing, Storing and Combusting 100% Green Hydrogen
,” Renewable Energy Magazine, Madrid, Spain, accessed Nov. 2, 2023, https://www.renewableenergymagazine.com/hydrogen/
46.
Cecere
,
D.
,
Giacomazzi
,
E.
,
Di Nardo
,
A.
, and
Calchetti
,
G.
,
2023
, “
Gas Turbine Combustion Technologies for Hydrogen Blends
,”
Energies
,
16
(
19
), p.
6829
.10.3390/en16196829
47.
Akram
,
M.
,
Ali
,
U.
,
Best
,
T.
,
Blakey
,
S.
,
Finney
,
K. N.
, and
Pourkashanian
,
M.
,
2016
, “
Performance Evaluation of PACT Pilot-Plant for CO2 Capture From Gas Turbines With Exhaust Gas Recycle
,”
Int. J. Greenhouse Gas Control
,
47
, pp.
137
150
.10.1016/j.ijggc.2016.01.047
48.
ElKady
,
A. M.
,
Evulet
,
A.
,
Brand
,
A.
,
Ursin
,
T. P.
, and
Lynghjem
,
A.
,
2009
, “
Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
034505
.10.1115/1.2982158
49.
Tanaka
,
Y.
,
Nose
,
M.
,
Nakao
,
M.
,
Saitoh
,
K.
,
Ito
,
E.
, and
Tsukagoshi
,
K.
,
2013
, “
Development of Low NOx Combustion System With EGR for 1700 C-Class Gas Turbine
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
50
(
1
), pp.
1
6
.https://www.mhi.co.jp/technology/review/pdf/e501/e501001.pdf
50.
Bellas
,
J.-M.
,
Finney
,
K. N.
,
Diego
,
M. E.
,
Ingham
,
D.
, and
Pourkashanian
,
M.
,
2019
, “
Experimental Investigation of the Impacts of Selective Exhaust Gas Recirculation on a Micro Gas Turbine
,”
Int. J. Greenhouse Gas Control
,
90
, p.
102809
.10.1016/j.ijggc.2019.102809
51.
Ditaranto
,
M.
,
Li
,
H.
, and
Løvås
,
T.
,
2015
, “
Concept of Hydrogen Fired Gas Turbine Cycle With Exhaust Gas Recirculation: Assessment of Combustion and Emissions Performance
,”
Int. J. Greenhouse Gas Control
,
37
, pp.
377
383
.10.1016/j.ijggc.2015.04.004
52.
Ditaranto
,
M.
,
Heggset
,
T.
, and
Berstad
,
D.
,
2020
, “
Concept of Hydrogen Fired Gas Turbine Cycle With Exhaust Gas Recirculation: Assessment of Process Performance
,”
Energy
,
192
, p.
116646
.10.1016/j.energy.2019.116646
53.
Bexten
,
T.
,
Jörg
,
S.
,
Petersen
,
N.
,
Wirsum
,
M.
,
Liu
,
P.
, and
Li
,
Z.
,
2021
, “
Model-Based Thermodynamic Analysis of a Hydrogen-Fired Gas Turbine With External Exhaust Gas Recirculation
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081016
.10.1115/1.4049699
54.
Chen
,
Y. Z.
,
Li
,
Y. G.
,
Tsoutsanis
,
E.
,
Newby
,
M.
, and
Zhao
,
X. D.
,
2021
, “
Techno-Economic Evaluation and Optimization of CCGT Power Plant: A Multi-Criteria Decision Support System
,”
Energy Convers. Manage.
,
237
, p.
114107
.10.1016/j.enconman.2021.114107
55.
Garievskii
,
M. V.
,
2020
, “
Optimization of CCGT Operating Modes at Variable Loads Taking Into Account Equivalent Operating Hours
,”
J. Phys.: Conf. Ser.
,
1683
(
4
), p.
042022
.10.1088/1742-6596/1683/4/042022
56.
Ravelli
,
S.
,
2022
, “
Thermodynamic Assessment of Exhaust Gas Recirculation in High-Volume Hydrogen Gas Turbines in Combined Cycle Mode
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111012
.10.1115/1.4055353
57.
Ravelli
,
S.
,
2023
, “
Reducing the Energy Penalty of Retrofit Decarbonization in Combined Cycle Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
145
(
12
), p.
121003
.10.1115/1.4063317
58.
U.S. Energy Information Administration
,
2023
, “
Electric Power Annual 2022
,”
U.S. Energy Information Administration,
Washington, DC.
59.
Abdollahian
,
A.
, and
Ameri
,
M.
,
2021
, “
Effect of Supplementary Firing on the Performance of a Combined Cycle Power Plant
,”
Appl. Therm. Eng.
,
193
, p.
117049
.10.1016/j.applthermaleng.2021.117049
60.
GE
,
2021
, “
7F Heavy Duty Gas Turbine 60 Hz
,” GE, Cambridge, MA, Paper No. GEA32930B.
61.
Li
,
H.
,
Ditaranto
,
M.
, and
Berstad
,
D.
,
2011
, “
Technologies for Increasing CO2 Concentration in Exhaust Gas From Natural Gas-Fired Power Production With Post-Combustion, Amine-Based CO2 Capture
,”
Energy
,
36
(
2
), pp.
1124
1133
.10.1016/j.energy.2010.11.037
62.
Thermoflow
,
2023
, “
Thermoflex®, Version 31
,” Thermoflow, Jacksonville, FL, accessed Nov. 3, 2023, https://www.thermoflow.com
You do not currently have access to this content.