Abstract

This work proposes a methodology to include accurate kinetics for soot modeling taking into account real fuel complexity in large eddy simulation (LES) of aeronautical engines at a reasonable computational cost. The methodology is based on the construction of an analytically reduced kinetic mechanism describing both combustion and gaseous soot precursors growth with sufficient accuracy on selected target properties. This is achieved in several steps, starting from the selection of the detailed kinetic model for combustion and soot precursors growth, followed by the determination of a fuel surrogate model describing the complex real fuel blend. Finally, the selected kinetic model is analytically reduced with the code arcane while controlling the error on flame properties and soot prediction for the considered fuel surrogate. To perform all evaluation and reduction tests on canonical sooting flames, a discrete sectional method (DSM) for soot has been implemented in cantera. The resulting code (cantera-soot) is now available for the fast calculation of soot production in laminar flames for any fuel. The obtained reduced kinetic scheme is finally validated in a rich–quench–lean (RQL) burner of the literature in terms of soot prediction capabilities by comparison of LES coupled to the Lagrangian soot tracking (LST) model with measurements. Results show a significant improvement of the soot level prediction when using the reduced more realistic kinetics, which also allows a more detailed analysis of the soot emission mechanisms. This demonstrates the gain in accuracy obtained with improved reduced kinetics and validates the methodology to build such schemes.

References

1.
Kärcher
,
B.
,
2018
, “
Formation and Radiative Forcing of Contrail Cirrus
,”
Nat. Commun.
,
9
(
1
), p.
1824
.10.1038/s41467-018-04068-0
2.
Fiorina
,
B.
,
Vié
,
A.
,
Franzelli
,
B.
,
Darabiha
,
N.
,
Massot
,
M.
,
Dayma
,
G.
,
Dagaut
,
P.
, et al.,
2016
, “
Modeling Challenges in Computing Aeronautical Combustion Chambers
,”
Aerosp. Lab
, (
11
), p.
19
.10.12762/2016.AL11-05
3.
Netzell
,
K.
,
Lehtiniemi
,
H.
, and
Mauss
,
F.
,
2007
, “
Calculating the Soot Particle Size Distribution Function in Turbulent Diffusion Flames Using a Sectional Method
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
667
674
.10.1016/j.proci.2006.08.081
4.
Rodrigues
,
P.
,
Franzelli
,
B.
,
Vicquelin
,
R.
,
Gicquel
,
O.
, and
Darabiha
,
N.
,
2018
, “
Coupling an LES Approach and a Soot Sectional Model for the Study of Sooting Turbulent Non-Premixed Flames
,”
Combust. Flame
,
190
, pp.
477
499
.10.1016/j.combustflame.2017.12.009
5.
Morán
,
J.
,
Yon
,
J.
,
Poux
,
A.
,
Corbin
,
F.
,
Ouf
,
F.-X.
, and
Siméon
,
A.
,
2020
, “
Monte Carlo Aggregation Code (MCAC) Part 2: Application to Soot Agglomeration, Highlighting the Importance of Primary Particles
,”
J. Colloid Interface Sci.
,
575
, pp.
274
285
.10.1016/j.jcis.2020.04.085
6.
Gallen
,
L.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2023
, “
Investigation of Soot Formation in Turbulent Spray Flame Burning Real Fuel
,”
Combust. Flame
,
258
, p.
112621
.10.1016/j.combustflame.2023.112621
7.
Andrade-Eiroa
,
A.
,
Leroy
,
V.
,
Dagaut
,
P.
, and
Bedjanian
,
Y.
,
2010
, “
Determination of Polycyclic Aromatic Hydrocarbons in Kerosene and Bio-Kerosene Soot
,”
Chemosphere
,
78
(
11
), pp.
1342
1349
.10.1016/j.chemosphere.2010.01.005
8.
Frenklach
,
M.
, and
Wang
,
H.
,
1991
, “
Detailed Modeling of Soot Particle Nucleation and Growth
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
1559
1566
.10.1016/S0082-0784(06)80426-1
9.
Narayanaswamy
,
K.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2010
, “
A Consistent Chemical Mechanism for Oxidation of Substituted Aromatic Species
,”
Combust. Flame
,
157
(
10
), pp.
1879
1898
.10.1016/j.combustflame.2010.07.009
10.
Wang
,
Y.
,
Raj
,
A.
, and
Chung
,
S. H.
,
2013
, “
A PAH Growth Mechanism and Synergistic Effect on PAH Formation in Counterflow Diffusion Flames
,”
Combust. Flame
,
160
(
9
), pp.
1667
1676
.10.1016/j.combustflame.2013.03.013
11.
Ranzi
,
E.
,
Cavallotti
,
C.
,
Cuoci
,
A.
,
Frassoldati
,
A.
,
Pelucchi
,
M.
, and
Faravelli
,
T.
,
2015
, “
New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-Alkanes
,”
Combust. Flame
,
162
(
5
), pp.
1679
1691
.10.1016/j.combustflame.2014.11.030
12.
Cazères
,
Q.
,
Pepiot
,
P.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2021
, “
A Fully Automatic Procedure for the Analytical Reduction of Chemical Kinetics Mechanisms for Computational Fluid Dynamics Applications
,”
Fuel
,
303
, p.
121247
.10.1016/j.fuel.2021.121247
13.
Davies
,
C. N.
,
1945
, “
Definitive Equations for the Fluid Resistance of Spheres
,”
Proc. Phys. Soc.
,
57
(
4
), p.
259
.10.1088/0959-5309/57/4/301
14.
Waldmann
,
L.
, and
Schmitt
,
K.
,
1966
, “
Thermophoresis and Diffusiophoresis of Aerosols
,”
Aerosol Science
, Vol.
137
,
Academic Press
,
New York
.
15.
Blanquart
,
G.
, and
Pitsch
,
H.
,
2007
, “
A Joint Volume-Surface-Hydrogen Multi-Variate Model for Soot Formation
,”
Combustion Generated Fine Carbonaceous Particles
,
H.
Bockhorn
,
A.
D'Anna
,
A. F.
Sarofim
, and
H.
Wang
, eds.,
KIT Scientific Publishing
,
Karlsruhe, Germany
, pp.
437
463
.
16.
Marchal
,
C.
,
2008
, “
Modélisation de la formation et de l'oxydation des suies dans un moteur automobile
,” Ph.D. thesis,
Université d'Orléans
,
Orléans, France
.
17.
Mauss
,
F.
,
Netzell
,
K.
, and
Lehtiniemi
,
H.
,
2006
, “
Aspects of Modeling Soot Formation in Turbulent Diffusion Flames
,”
Combust. Sci. Technol.
,
178
(
10–11
), pp.
1871
1885
.10.1080/00102200600790888
18.
Guo
,
H.
,
Anderson
,
P. M.
, and
Sunderland
,
P. B.
,
2016
, “
Optimized Rate Expressions for Soot Oxidation by OH and O2
,”
Fuel
,
172
, pp.
248
252
.10.1016/j.fuel.2016.01.030
19.
Thajudeen
,
T.
,
Gopalakrishnan
,
R.
, and
Hogan
,
C. J.
,
2012
, “
The Collision Rate of Nonspherical Particles and Aggregates for All Diffusive Knudsen Numbers
,”
Aerosol Sci. Technol.
,
46
(
11
), pp.
1174
1186
.10.1080/02786826.2012.701353
20.
Bisetti
,
F.
,
Blanquart
,
G.
,
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2012
, “
On the Formation and Early Evolution of Soot in Turbulent Nonpremixed Flames
,”
Combust. Flame
,
159
(
1
), pp.
317
335
.10.1016/j.combustflame.2011.05.021
21.
Saggese
,
C.
,
Ferrario
,
S.
,
Camacho
,
J.
,
Cuoci
,
A.
,
Frassoldati
,
A.
,
Ranzi
,
E.
,
Wang
,
H.
, and
Faravelli
,
T.
,
2015
, “
Kinetic Modeling of Particle Size Distribution of Soot in a Premixed Burner-Stabilized Stagnation Ethylene Flame
,”
Combust. Flame
,
162
(
9
), pp.
3356
3369
.10.1016/j.combustflame.2015.06.002
22.
Camacho
,
J.
,
Liu
,
C.
,
Gu
,
C.
,
Lin
,
H.
,
Huang
,
Z.
,
Tang
,
Q.
,
You
,
X.
, et al.,
2015
, “
Mobility Size and Mass of Nascent Soot Particles in a Benchmark Premixed Ethylene Flame
,”
Combust. Flame
,
162
(
10
), pp.
3810
3822
.10.1016/j.combustflame.2015.07.018
23.
Gleason
,
K.
,
Carbone
,
F.
, and
Gomez
,
A.
,
2021
, “
PAHs Controlling Soot Nucleation in 0.101–0.811 MPa Ethylene Counterflow Diffusion Flames
,”
Combust. Flame
,
227
, pp.
384
395
.10.1016/j.combustflame.2021.01.015
24.
Honnet
,
S.
,
Seshadri
,
K.
,
Niemann
,
U.
, and
Peters
,
N.
,
2009
, “
A Surrogate Fuel for Kerosene
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
485
492
.10.1016/j.proci.2008.06.218
25.
Humer
,
S.
,
Seiser
,
R.
, and
Seshadri
,
K.
,
2011
, “
Experimental Investigation of Combustion of Jet Fuels and Surrogates in Nonpremixed Flows
,”
J. Propul. Power
,
27
(
4
), pp.
847
855
.10.2514/1.46916
26.
Dooley
,
S.
,
Won
,
S. H.
,
Chaos
,
M.
,
Heyne
,
J.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
, et al.,
2010
, “
A Jet Fuel Surrogate Formulated by Real Fuel Properties
,”
Combust. Flame
,
157
(
12
), pp.
2333
2339
.10.1016/j.combustflame.2010.07.001
27.
Eddings
,
E. G.
,
Yan
,
S.
,
Ciro
,
W.
, and
Sarofim
,
A. F.
,
2005
, “
Formulation of a Surrogate for the Simulation of Jet Fuel Pool Fires
,”
Combust. Sci. Technol.
,
177
(
4
), pp.
715
739
.10.1080/00102200590917248
28.
Pertesana
,
S.
,
2021
, “
Jet Fuel Surrogates Formulation and Metamodeling of Fuel Mixtures Properties
,”
Master's thesis
,
Politecnico di Milano
,
Milano, Italy
.https://www.politesi.polimi.it/retrieve/327d8780-a139-4354-9e47-cb99eda34c2b/2021_10_Pertesana.pdf
29.
Kumar
,
K.
,
Sung
,
C.-J.
, and
Hui
,
X.
,
2011
, “
Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels
,”
Fuel
,
90
(
3
), pp.
1004
1011
.10.1016/j.fuel.2010.11.022
30.
Hui
,
X.
, and
Sung
,
C.-J.
,
2013
, “
Laminar Flame Speeds of Transportation-Relevant Hydrocarbons and Jet Fuels at Elevated Temperatures and Pressures
,”
Fuel
,
109
, pp.
191
200
.10.1016/j.fuel.2012.12.084
31.
Mullins
,
B.
,
1948
, “
The Spontaneous Combustion of Fuels Injected Into a Hot Gas Stream
,”
Symp. Combust. Flame, Explos. Phenom.
,
3
(
1
), pp.
704
713
.10.1016/S1062-2896(49)80097-3
32.
Freeman
,
G.
, and
Lefebvre
,
A.
,
1984
, “
Spontaneous Ignition Characteristics of Gaseous Hydrocarbon-Air Mixtures
,”
Combust. Flame
,
58
(
2
), pp.
153
162
.10.1016/0010-2180(84)90090-7
33.
Xue
,
X.
,
Hui
,
X.
,
Singh
,
P.
, and
Sung
,
C. J.
,
2017
, “
Soot Formation in Non-Premixed Counterflow Flames of Conventional and Alternative Jet Fuels
,”
Fuel
,
210
, pp.
343
351
.10.1016/j.fuel.2017.08.079
34.
Shastry
,
V.
,
Cazeres
,
Q.
,
Rochette
,
B.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2021
, “
Numerical Study of Multicomponent Spray Flame Propagation
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
3201
3211
.10.1016/j.proci.2020.07.090
35.
Perrier
,
A.
,
Milea
,
A.-S.
,
Caceres
,
M.
,
Vandel
,
A.
,
Godard
,
G.
,
Cayre
,
A.
,
Collin-Bastiani
,
F.
,
Cabot
,
G.
, and
Grisch
,
F.
,
2023
, “
Soot Formation and Flame Characterization in a Swirl Kerosene Spray Rich Burn-Quench-Lean Burner at Elevated Pressure
,”
ASME
Paper No. GT2023-103642.10.1115/GT2023-103642
36.
Gourdain
,
N.
,
Gicquel
,
L.
,
Montagnac
,
M.
,
Vermorel
,
O.
,
Gazaix
,
M.
,
Staffelbach
,
G.
,
Garcia
,
M.
,
Boussuge
,
J.-F.
, and
Poinsot
,
T.
,
2009
, “
High Performance Parallel Computing of Flows in Complex Geometries: I. Methods
,”
Comput. Sci. Discovery
,
2
(
1
), p.
015003
.10.1088/1749-4699/2/1/015003
37.
Blanchard
,
S.
,
Cazères
,
Q.
, and
Cuenot
,
B.
,
2022
, “
Chemical Modeling for Methane Oxy-Combustion in Liquid Rocket Engines
,”
Acta Astronaut.
,
190
, pp.
98
111
.10.1016/j.actaastro.2021.09.039
38.
Cuenot
,
B.
,
Shum-Kivan
,
F.
, and
Blanchard
,
S.
,
2022
, “
The Thickened Flame Approach for Non-Premixed Combustion: Principles and Implications for Turbulent Combustion Modeling
,”
Combust. Flame
,
239
, p.
111702
.10.1016/j.combustflame.2021.111702
You do not currently have access to this content.