Abstract

The optimization of Venturi mixers in burners is critical for enhancing combustion efficiency and minimizing emissions. In this study, we utilize the adjoint method to analyze and refine the design of a Venturi mixer. Our numerical simulations integrate the species transport equation with the eddy dissipation model (EDM) for reacting flow and the generalized k–ω (GEKO) model to simulate turbulence. By solving adjoint equations, we effectively compute the shape sensitivity for various observables, including pressure drop, outlet fuel variance/uniformity deviation index, air and fuel mass flow rates, and outlet CO mass fraction. The shape sensitivity analysis uncovers the interplay between the observables and the appropriate weights for multiple objective optimizations. Subsequently, we perform gradient-based optimizations to enhance the mixer's performance, employing both shape sensitivity and mesh morphing techniques. We conduct a series of case studies focusing on both cold and reacting flows. The optimization of cold flow provides an in-depth exploration of various optimization strategies, encompassing single-objective and multi-objective optimization with diverse weight combinations. Following this, the optimization under reacting flow conditions improves the fuel/air mixing, leading to the increase of combustion efficiency and hence the reduction of CO emissions. Our findings showcase the potential of an adjoint-based optimization framework in designing Venturi mixers that are efficient and emit lower levels of pollutants.

References

1.
Danardono
,
D.
,
Kim
,
K.-S.
,
Lee
,
S.-Y.
, and
Lee
,
J.-H.
,
2011
, “
Optimization the Design of Venturi Gas Mixer for Syngas Engine Using Three-Dimensional CFD Modeling
,”
J. Mech. Sci. Technol.
,
25
(
9
), pp.
2285
2296
.10.1007/s12206-011-0612-8
2.
Xu
,
M.
, and
Wei
,
M.
,
2016
, “
Using Adjoint-Based Optimization to Study Kinematics and Deformation of Flapping Wings
,”
J. Fluid Mech.
,
799
, pp.
56
99
.10.1017/jfm.2016.351
3.
Xu
,
M.
,
Wei
,
M.
,
Li
,
C.
, and
Dong
,
H.
,
2019
, “
Adjoint-Based Optimization for Thrust Performance of Three-Dimensional Pitching–Rolling Plate
,”
AIAA J.
,
57
(
9
), pp.
3716
3727
.10.2514/1.J057203
4.
Nielsen
,
E. J.
, and
Kyle Anderson
,
W.
,
1999
, “
Aerodynamic Design Optimization on Unstructured Meshes Using the Navier–Stokes Equations
,”
AIAA J.
,
37
(
11
), pp.
1411
1419
.10.2514/2.640
5.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.10.1007/BF01061285
6.
Dwight
,
R. P.
, and
Brezillon
,
J.
,
2006
, “
Effect of Approximations of the Discrete Adjoint on Gradient-Based Optimization
,”
AIAA J.
,
44
(
12
), pp.
3022
3031
.10.2514/1.21744
7.
Othmer
,
C.
,
2008
, “
A Continuous Adjoint Formulation for the Computation of Topological and Surface Sensitivities of Ducted Flows
,”
Int. J. Numer. Methods Fluids
,
58
(
8
), pp.
861
877
.10.1002/fld.1770
8.
Lemke
,
M.
,
Reiss
,
J.
, and
Sesterhenn
,
J.
,
2014
, “
Adjoint Based Optimisation of Reactive Compressible Flows
,”
Combust. Flame
,
161
(
10
), pp.
2552
2564
.10.1016/j.combustflame.2014.03.020
9.
Ansys Inc.,
2024
, “
Ansys Fluent® Theory Guide. Release 2024R1
,” Ansys, Canonsburg, PA.
10.
Menter
,
F. R.
,
Matyushenko
,
A.
, and
Lechner
,
R.
,
2020
, “
Development of a Generalized k-ω Two-Equation Turbulence Model
,”
Notes on Numerical Fluid Mechanics and Multidisciplinary Design
, Springer, Cham, Vol. 142.
11.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symp. (International) Combust.
,
16
(
1
), pp.
719
729
.10.1016/S0082-0784(77)80366-4
12.
Ansys Inc.,
2024
, “
Ansys Fluent User's Guide. Release 2024R1
,” Ansys, Canonsburg, PA.
13.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2000
, “
A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization
,”
AIAA
Paper No. 2000-667.10.2514/6.2000-667
14.
Giles
,
M. B. M. B.
,
Pierce
,
N.
,
Giles
,
M.
, and
Pierce
,
N.
,
1997
, “
Adjoint Equations in CFD-Duality, Boundary Conditions and Solution Behaviour
,”
AIAA
Paper No. 1997-1850
.10.2514/6.1997-1850
15.
Gauger
,
N. R.
,
Walther
,
A.
,
Moldenhauer
,
C.
, and
Widhalm
,
M.
,
2006
, “
Automatic Differentiation of an Entire Design Chain for Aerodynamic Shape Optimization
,”
New Results in Numerical and Experimental Fluid Mechanics VI: Contributions to the 15th STAB/DGLR Symposium
,
Springer Berlin Heidelberg
,
Darmstadt, Germany
, pp.
454
461
.10.1007/978-3-540-74460-3_56
16.
Albring
,
T. A.
,
Sagebaum
,
M.
, and
Gauger
,
N. R.
,
2015
, “
Development of a Consistent Discrete Adjoint Solver in an Evolving Aerodynamic Design Framework
,”
AIAA
Paper No. 2015-3240.10.2514/6.2015-3240
17.
Pironneau
,
O.
,
2005
, “
Optimal Shape Design for Elliptic Systems
,”
System Modeling and Optimization: Proceedings of the 10th IFIP Conference
, New York City, Aug. 31–Sept. 4, 1981,
Berlin, Heidelberg
, pp.
42
66
.https://link.springer.com/book/10.1007/978-3-642-87722-3
18.
Anderson
,
W. K.
, and
Venkatakrishnan
,
V.
,
1999
, “
Aerodynamic Design Optimization on Unstructured Grids With a Continuous Adjoint Formulation
,”
Comput. Fluids
,
28
(
4–5
), pp.
443
480
.10.1016/S0045-7930(98)00041-3
19.
Papadimitriou
,
D. I.
, and
Giannakoglou
,
K. C.
,
2007
, “
A Continuous Adjoint Method With Objective Function Derivatives Based on Boundary Integrals, for Inviscid and Viscous Flows
,”
Comput. Fluids
,
36
(
2
), pp.
325
341
.10.1016/j.compfluid.2005.11.006
20.
Juniper
,
M. P.
,
2018
, “
Sensitivity Analysis of Thermoacoustic Instability With Adjoint Helmholtz Solvers
,”
Phys. Rev. Fluids
,
3
(
11
), p.
110509
.10.1103/PhysRevFluids.3.110509
21.
Verma
,
I.
,
Hill
,
C.
, and
Xu
,
M.
,
2018
, “
Multi-Objective Adjoint Optimization of Flow-Bench Port Geometry
,”
SAE
Paper No. 2018-01-0772.10.4271/2018-01-0772
22.
Peter
,
J. E. V.
, and
Dwight
,
R. P.
,
2010
, “
Numerical Sensitivity Analysis for Aerodynamic Optimization: A Survey of Approaches
,”
Comput. Fluids
,
39
(
3
), pp.
373
391
.10.1016/j.compfluid.2009.09.013
23.
Wieselsberger
,
C.
,
1922
, “
New Data on the Laws of Fluid Resistance
,” Aerodynamic Institute, Gottingen, Germany, Paper No.
NACA-TN-84
.https://ntrs.nasa.gov/citations/19930080855
24.
Ren
,
C.
,
Zhou
,
H.
,
Wu
,
H.
,
Chen
,
Q.
, and
Jadhav
,
T.
,
2020
, “
Aerodynamic Optimization of Vehicle Configuration Based on Adjoint Method
,”
SAE
Paper No. 2020-01-0915.10.4271/2020-01-0915
You do not currently have access to this content.