Abstract

The paper introduces a novel method for generalized heat exchanger (HX) design and evaluation, freeing the process from predefined geometries. It aims to facilitate early-stage conceptual exploration, allowing the designer to make informed decisions. The paper explores heat transfer and fluid friction principles in order to set key parameters for estimating aerothermal performance, introduced by LaHaye et al. Arguing against a single metric, the paper proposes a custom cost function (CF) for evaluating the integrated generalized heat exchanger. A case study applies the method to a particular aircraft engine scenario, using cost functions to evaluate intercooler designs based on pressure loss and heat transfer surface weight. The study determines suitable heat exchanger families for further development, considering factors like finned area, compactness, and flow distribution.

References

1.
Capitao Patrao
,
A.
,
Jonsson
,
I.
,
Xisto
,
C.
,
Lundbladh
,
A.
,
Lejon
,
M.
, and
Grönstedt
,
T.
,
2024
, “
The Heat Transfer Potential of Compressor Vanes on a Hydrogen Fueled Turbofan Engine
,”
Appl. Therm. Eng.
,
236
, p.
121722
.10.1016/j.applthermaleng.2023.121722
2.
Lee
,
J. A.
, and
Woods
,
S.
,
2016
, “
Hydrogen Embrittlement
,” NASA, Washington, DC, Report No.
NASA/TM–2016-218602
.https://ntrs.nasa.gov/citations/20160005654
3.
Shah
,
R. K.
, and
Sekulic
,
D. P.
,
2003
,
Fundamentals of Heat Exchanger Design
,
Wiley
, Hoboken, NJ.
4.
Kuppan
,
T.
,
2000
,
Heat Exchanger Design Handbook
,
Marcel Dekker
,
New York
.
5.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
, “
Compact Heat Exchangers
,” McGraw-Hill, New York.
6.
Shah
,
R. K.
,
1978
, “
Compact Heat Exchanger Surface Selection Methods
,”
International Heat Transfer Conference Digital Library
, San Francisco, CA, Aug. 17–22, Begell House, pp.
193
199
.10.1615/IHTC6.1570
7.
Cowell
,
T. A.
,
1990
, “
A General Method for the Comparison of Compact Heat Transfer Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
2
), pp.
288
294
.10.1115/1.2910374
8.
Stone
,
K.
,
1996
, “
Review of Literature on Heat Transfer Enhancement in Compact Heat Exchangers
,” Air Conditioning and Refrigeration Center, Report No.
TR-105
.http://hdl.handle.net/2142/11540
9.
Fugmann
,
H.
,
Laurenz
,
E.
, and
Schnabel
,
L.
,
2019
, “
Multi-Dimensional Performance Evaluation of Heat Exchanger Surface Enhancements
,”
Energies
,
12
(
7
), p.
1406
.10.3390/en12071406
10.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
State-of-the-Art in Heat Exchanger Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
178
, p.
121600
.10.1016/j.ijheatmasstransfer.2021.121600
11.
LaHaye
,
P. G.
,
Neugebauer
,
F. J.
, and
Sakhuja
,
R. K.
,
1974
, “
A Generalized Prediction of Heat Transfer Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
96
(
4
), pp.
511
517
.10.1115/1.3450237
12.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
, Vol.
6
,
Wiley
,
New York
.
13.
Rebassa
,
A.
,
Rahbari
,
I.
,
Paulson
,
J.
, and
Paniagua
,
G.
,
2023
, “
Aerothermal Characterization of Finned Surfaces in High-Speed Flows
,”
Appl. Therm. Eng.
,
227
, p.
120331
.10.1016/j.applthermaleng.2023.120331
14.
Villafañe
,
L.
, and
Paniagua
,
G.
,
2018
, “
Aerodynamic Impact of Finned Heat Exchangers on Transonic Flows
,”
Exp. Therm. Fluid Sci.
,
97
, pp.
223
236
.10.1016/j.expthermflusci.2018.04.012
15.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library Coolprop
,” Ind. Eng. Chem. Res.,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
16.
Wilfert
,
G.
,
Sieber
,
J.
,
Rolt
,
A.
,
Baker
,
N.
,
Touyeras
,
A.
, and
Colantuoni
,
S.
,
2007
, “
New Environmental Friendly Aero Engine Core Concepts
,” XVIII International Symposium on Air Breathing Engines (
ISABE
), Beijing, China, Sept. 2–7, ISABE Paper No. 2007-1120.https://www.academia.edu/16769881/New_Environmental_Friendly_Aero_Engine_Core_Concepts
17.
Zhao
,
X.
,
Grönstedt
,
T.
, and
Kyprianidis
,
K.
,
2013
, “
Assessment of the Performance Potential for a Two-Pass Cross Flow Intercooler for Aero Engine Applications
,” International Society for Airbreathing Engines (
ISABE
), Busan, South Korea, Sept. 9–13, ISABE Paper No.
2013
1215
.https://www.researchgate.net/publication/259009545_Assessment_of_the_performance_potential_for_a_two-pass_cross_flow_intercooler_for_aero_engine_applications
18.
Zhao
,
X.
,
Thulin
,
O.
, and
Grönstedt
,
T.
,
2015
, “
First and Second Law Analysis of Intercooled Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
, 138(2), p.
021202
.10.1115/1.4031316
19.
Doo
,
J.
,
Ha
,
M.
,
Min
,
J.
,
Stieger
,
R.
,
Rolt
,
A.
, and
Son
,
C.
,
2012
, “
Theoretical Prediction of Longitudinal Heat Conduction Effect in Cross-Corrugated Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4129
4138
.10.1016/j.ijheatmasstransfer.2012.03.054
20.
Dović
,
D.
,
Palm
,
B.
, and
Švaić
,
S.
,
2009
, “
Generalized Correlations for Predicting Heat Transfer and Pressure Drop in Plate Heat Exchanger Channels of Arbitrary Geometry
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4553
4563
.10.1016/j.ijheatmasstransfer.2009.03.074
You do not currently have access to this content.